
Automating the Meta Theory of Deductive Systems

Carsten Schürmann

October 16, 2000
CMU-CS-00-146

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:
Frank Pfenning, Chair

Robert Harper
Peter Lee

Dana Scott
Natarajan Shankar, SRI International

Copyright © 2000 Carsten Schürmann

This research was sponsored by the Defense Advanced Research Projects Agency CSTO under the title "The
Fox Project: Advanced Languages for Systems Software", DARPA Order No. C533, issued by ESC/ENS under
Contract No. F19628-95-C-0050. This research was also sponsored by the National Science Foundation under
grant CCR-9619584.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of NSF or the U.S. Government.

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited 20001207 018

Keywords: meta logic, LF, induction, regular world assumption, readability, higher-order
abstract syntax, Twelf

vVt
OrV^&negie
v££$&llon School of Computer Science

DOCTORAL THESIS
in the field of

PURE AND APPLIED LOGIC

Automating the Meta Theory of Deductive Systems

CARSTEN SCHUERMANN

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

1 THESIsJcOMMITTEE CHAIR 7J DATE

+ 2~occ>e>
DEPARTMENT HEAD O DATE

feAzW
DEAN 'DATE

Abstract

This thesis describes the design of a meta-logical framework that supports the representation
and verification of deductive systems, its implementation as an automated theorem prover, and
experimental results related to the areas of programming languages, type theory, and logics.
Design: The meta-logical framework extends the logical framework LF [HHP93] by a meta-logic
M-2- This design is novel and unique since it allows higher-order encodings of deductive systems
and induction principles to coexist. On the one hand, higher-order representation techniques
lead to concise and direct encodings of programming languages and logic calculi. Inductive
definitions on the other hand allow the formalization of properties about deductive systems,
such as the proof that an operational semantics preserves types or the proof that a logic is
consistent. M.^ is a proof calculus whose proof terms are recursive functions that may be
defined by cases and range over dependent higher-order types. The soundness of M^ follows
from a realizability interpretation of proof terms as total recursive functions.
Implementation: A proof search algorithm for proof terms in M^ is implemented in the meta-
theorem prover that is part of the Twelf system [PS99b]. Its takes full advantage of higher-order
encodings while using inductive reasoning.
Experiments: Twelf has been used for many experiments. Among others, it proved automatically
the Church-Rosser theorem for the simply-typed A-calculus and the cut-elimination theorem for
intuitionistic first-order logic. In programming languages, it proved various type preservation
theorems for different operational semantics and compiler correctness theorems. In logics, it was
able to derive the equivalence of various logic calculi, such as the natural deduction calculus, the
sequent calculus, and the Hilbert calculus. Twelf also proved that Cartesian closed categories
can be embedded into the simply-typed A-calculus. In the special domains of programming
languages, type theory, and logics, Twelf's reasoning power far exceeds that of any other theorem
prover.

11

Contents

Introduction 3
1.1 Contributions 9
1.2 Outline 10

Background 11

Logical Frameworks 13
2.1 Introduction 13
2.2 The Simply-Typed A-Calculus 14

2.2.1 Reduction Relations 16
2.3 Methodology of Representation 17

2.3.1 Type theory 18
2.3.2 Higher-order abstract syntax 18
2.3.3 Adequacy 21
2.3.4 Summary 26

2.4 The Logical Framework LF 27
2.4.1 Syntax 27
2.4.2 Semantics 28
2.4.3 Canonical Forms 30
2.4.4 Meta-Theory 31

2.5 More Examples 32
2-6 Function Spaces 34
2.7 Summary 35

Reasoning 37
3.1 Introduction 37
3.2 Church-Rosser Theorem 37

3.2.1 Properties of Ordinary Reduction 38
3.2.2 Parallel Reduction 40
3.2.3 Properties of Parallel Reduction 42
3.2.4 Equivalence of Parallel and Ordinary Reduction 56

3.3 Historical Overview 58
3.3.1 General-Purpose Theorem Provers 58
3.3.2 Special-Purpose Theorem Provers 59

3.4 Summary 60

iii

iv CONTENTS

II Design of a Meta-Logical Framework 63

4 Meta-Logical Frameworks 65
4.1 Introduction 65
4.2 Methodology 67

4.2.1 Closed Meta-Theorems 68
4.2.2 Open Meta-Theorems 73
4.2.3 More on Meta-Theorems 90

4.3 Overview Of This Thesis 94
4.4 Related Work 96
4.5 Summary 99

5 The Meta-logic M% 101
5.1 Introduction 101
5.2 Preliminaries 102
5.3 The Logic 103

5.3.1 Syntax 103
5.3.2 Semantics 106

5.4 The Proof System 108
5.4.1 Generalized Contexts 108
5.4.2 Context Schemas 110
5.4.3 Formulas 110
5.4.4 .M+-Calculus Ill

5.5 Proof Term Calculus 119
5.5.1 Provability of General Formulas 120
5.5.2 Provability of Formulas 121
5.5.3 Provability of Declarations 123

5.6 Induction 124
5.6.1 Well-Founded Recursion 125
5.6.2 Complete Case Analysis 125

5.7 Lemmas 136
5.7.1 Preliminaries 136
5.7.2 Context Schema Subsumption 137
5.7.3 Proof Rules 138

5.8 Summary 141

6 Operational Semantics for .Mj 143
6.1 Introduction 143
6.2 Preliminaries 143

6.2.1 LF 144
6.2.2 Abstraction 145
6.2.3 Weakening 150
6.2.4 Substitution 152

6.3 Subsumption 158
6.4 Matching 159

6.4.1 Spine Calculus 160

iv

CONTENTS

6.4.2 Algorithm 160
6.4.3 Strictness 168
6.4.4 Soundness 172
6.4.5 Completeness 173
6.4.6 Results 176

6.5 Big-Step Semantics 176
6.6 Summary 180

7 Readability 181
7.1 Small-Step Semantics 182

7.1.1 Programs 183
7.1.2 States 183
7.1.3 Abstract Machine 185
7.1.4 Validity 188

7.2 Termination 192
7.2.1 Syntactic Restriction on Proof Terms 193
7.2.2 Syntactic Termination Criterion 194
7.2.3 Termination Theorem 196

7.3 Coverage 197
7.3.1 Motivation 197
7.3.2 Coverage Condition 203
7.3.3 Meta-Theory 209

7.4 Soundness of M\ 214
7.5 Summary 215

III Implementation 217

8 Twelf 219
8.1 Introduction 219
8.2 Theorem Prover for LF 220

8.2.1 Basic Operations 221
8.2.2 Correctness 223
8.2.3 Limitations 223

8.3 Meta-Theorem Prover 224
8.3.1 Basic Operations 224
8.3.2 Lemmas 229
8.3.3 Strategy 230
8.3.4 Correctness 232
8.3.5 Limitations 233

8.4 A Case Study 234
8.4.1 A Brief Overview of Twelf 234
8.4.2 Developing the Church-Rosser Theorem in Twelf 241

8.5 Experimental results 251
8.6 Summary 253

vi CONTENTS

9 Conclusion 255
9.1 Future Work 256

9.1.1 Applications of M% 257
9.1.2 Adaptation of M\ 258
9.1.3 Extensions of M\ 259
9.1.4 Implementation of M.\ 259
9.1.5 Functional Programming in M. J 261

9.2 Summary 261

A Inference rules 263
A.l Meta-Logic M\ 2C3
A.2 Operational Big-Step Semantics 265
A.3 Operational Small-Step Semantics 266
A.4 Typing Rules for Continuations 267

B Operational Semantics 271
B.l Preliminiaries 271

B.l.l Abstraction 271
B.l.2 Substitution 273

B.2 Strictness 279
B.3 Big-Step Semantics 282

C Readability 289

vi

List of Figures

2.1 Methodology of representation 18
2.2 Type and term constant declarations 23

3.1 LF encoding of parallel reduction and parallel conversion (extends Figure 2.2) . . 42

4.1 The meta-logical layer 68
4.2 Formal proof of the transitivity Theorem 4.4 79
4.3 Formal proof of the substitution Lemma 4.5 81
4.4 Formal proof of the diamond Lemma 3.7 87
4.5 Formal proof of the strip Lemma 3.8 88
4.6 Formal proof of the confluence Lemma 3.9 89
4.7 Formal proof of the Church-Rosser Theorem 3.10 for parallel reduction 89
4.8 Formal proof of the embedding Lemma 4.11 for parallel reduction 94

8.1 Proof strategy 231
8.2 Reserved identifiers 235
8.3 Reserved identifiers with predefined meaning 235
8.4 Concrete syntax of Twelf 236
8.5 Syntax for terms 236
8.6 User-defined infix operators 237
8.7 Syntax for .M+-formulas in Twelf 239
8.8 Syntax for induction orders in Twelf 240
8.9 Syntax for call-patterns in Twelf 240
8.10 Syntax for proof declarations in Twelf 240
8.11 Experimental results (in CPU seconds) 252

vn

viü LIST OF FIGURES

vin

Acknowledgments

Many people have contributed to the success of this thesis, and I am very grateful to all them.
First and foremost, I would like to thank my advisor Frank Pfenning who has introduced me to
the wonderful and elegant world of logical frameworks in his Computation and Deduction class
in Spring 1994.

It was this class, that sparked my interest to work on meta-logical frameworks for LF. From
a student's perspective, many of the theorems presented in the class looked rather complicated,
yet their proofs were so elegant and used only very few proof techniques, that it seemed plausible
to try to automate their derivations. Looking back on the class now, we are very happy to report
that all but a few theorems can be automatically derived using Twelf.

Thanks, Frank, for your guidance, for your vision and insight, for your advice, and for the
many discussions we have had over the previous years. I learned a lot from you. Without your
experience on prior implementations of the Elf and the Ergo system, Twelf's core would not be
as elegant as it is today.

Second, I would like to thank Peter Lee, Robert Harper, Dana Scott, and Natarajan Shankar
for being on my thesis committee and for providing me with lots of suggestions, advice, and ideas.
In particular, I want to express my thanks to Peter Lee and George Necula, who succeeded with
their work on proof carrying code to export logical framework technology to other communities,
Robert Harper who used the Twelf system to verify properties about abstract machines, Dana
Scott, who was happy to discuss different aspects of the system with me, and Natarajan Shankar
who demonstrated that automated theorem proving technology is useful and important for the
real-world.

Third, I would like to thank Wilfried Sieg and Teddy Seinfeld for admitting me the Pure
and Applied Logic Program at Carnegie Mellon University. Thanks also to Steve Brookes, John
Reynolds, and Edmund Clarke for many great ideas.

Special thanks go to all my friends and fellow students for all the countless discussions, for
your support and for the great time: Doug Baker, Andrej Bauer, Christoph Benzmüller, Lars
Birkedal, Matthew Bishop, Michael Bowling, Iliano Cervesato, Perry Cheng, Karl Crary, Rowan
Davis, Herb Derby, Jürgen Dingel, Armin Fiedler, Jesse Hughes, Somesh Jha, Will Marrero,
Dominic Mazzoni, Raymond McDowell, Alberto Momigliano, Ljubomir Perkovic, Jeff Polakow,
Mark Plesko, Brigitte Pientka, Ekkehard Rohwedder, Dario Salvucci, Dirk Schlimm, Aaron
Stump, Peter Venable, Roberto Virga, Kevin Watkins, Hao-Chi Wong, and Hongwei Xi.

My time in Pittsburgh would have not been what it was without my dear friend Molly
Bigelow, who believed in me throughout the years, and who waited patiently for me to finish.
I want to thank her for all her love, patience, guidance, and simply for being her. I also feel
very much in debt to my parents and my brother who supported me over all these years, and
for their strength to stand me being so far away for so long.

LIST OF FIGURES

Chapter 1

Introduction

We can look at the current field of problem solving by computers
as a series of ideas about how to present a problem. If a problem
can be cast into one of these representations in a natural way,
then it is possible to manipulate it and stand some chance of
solving it. [Allen Newell]

It is common knowledge that it is very difficult to design software systems that work flawlessly
and reliably. Most software products contain defects, some of them are harmless others might be
potentially harmful. From experiences in programming language research we have learned that
many software defects can be avoided by using appropriate programming languages. For exam-
ple, strongly typed languages like Standard ML of New Jersey [MTHM97], or Haskell [Tho99]
guarantee by design that a program can never cause a segmentation fault and crash.

Also Java [LY96] is designed with a strong type system. Following from properties of the
Java language, the execution of a Java program theoretically never crashes. In fact, the Java
bytecode verifier that is part of the Java distribution statically examines byte code for memory
and type violations and rejects suspicious bytecode. But can we trust the byte code verifier?
Certainly not, since its semantics is specified only informally and in plain English, which renders
convincing formal proofs of any safety guarantees impossible.

Consequently, a rigorous formalization of the programming language and its semantics is
necessary in order to reason about it and to convince others about the soundness of a design.
A sound design of ML for example guarantees that the execution of a program of given type
never returns a result that is of another type. It should also guarantee that the algorithm that
computes the type of a program — the type-inference algorithm — always terminates and always
return the correct results: the principle type if it exists or failure otherwise.

Therefore, in order to reason about programming languages we must rely on rigorous formal-
izations of their syntax operational semantics. Formulations of this kind have been developed
for example for ML [MTHM97, HS97], and for subsets of Java [SA98, Nv098] but rigorous
arguments about these formalizations are very difficult to do. Answers to questions such as "Is
Java type safe?" or "Is ML type-checking decidable?" are tedious arguments, and they must
consider typically so many cases that they are not easily verifiable by humans. This thesis is
about tools to represent and reason about programming languages.

Another motivating example comes from the area of authentication protocol design. Using

the Needham-Schroeder protocol [NS78] two corresponding parties can authenticate, but unfor-
tunately the protocol is flawed. Lowe [Low96] has shown that it can be attacked by an intruder
making his victim believe that he is somebody else. Is it possible to catch design flaws like
this during the design process? It is, by using techniques such as model checking [MCJ97] or
inductive theorem proving [Pau98].

A few decades ago the importance of automated reasoning has led researchers to develop
systems that provide formal support for everyday tasks of mathematicians programming lan-
guage designers. The first major breakthrough, for example, was possibly a computer assistant
proof of the four color theorem [AH77a, AH77b]: Every planar graph is colorable by four colors
in such a way that regions sharing a common boundary do not share the same color.

Historically speaking, one of the first general purpose theorem provers including induction
is Nqthm system [BM79, BM88] that has been used to prove a tremendous variety of different
results many directly relevant to programming language research. Shankar [Sha94], for example,
has used Nqthm to check a proof of the Church-Rosser theorem for the untyped A-calculus holds,
and he has also verified GödePs incompleteness theorem. Another example goes back to Kunen
who formalized the proof Ramsey's theorem [Kun95] in Nqthm.

Following the lead of Nqthm, many other theorem provers have evolved based on different
logics and different automated deduction algorithms with different strengths and weaknesses.
Otter [McC94] for example has been used to show that all Robbins algebras are Boolean [Mc.C97]
as conjectured in 1933.

First-order automated theorem provers could be applicable to our domain of reasoning about
programming languages. However, they are not appropriate for representing programming lan-
guages such as ML or Java since they do not provide inductive definitions. But there are others:
INKA [HS96] for example is a theorem prover that can handle induction and so are many proof
assistants that are based on type theory, such as for example Isabelle [Pau94], Coq [DFH+93],
NuPRL [C+86], and Lego [LP92].

Isabelle is a very popular proof assistant and has been used, for example, to reason about
programming languages such as Milner's type inference algorithm [NN99] and the operational
semantics of a simple programming language [AC99]. It has also been used to reason about
program refinement languages bases on an embedding of weakest preconditions [Sta99].

Similar experiments in the area of programming languages have been conducted with the Coq
system. In functional programming the type inference algorithm of ML has been verified in Coq
[CD99], and in logic programming the algorithm of SLD resolution [Jau99j. These experiments
are not small, on the contrary in the case of the formalization of SLD resolution, approximately
600 technical lemmas were necessary in the entire development.

The Ensemble project [KHH98] is concerned with the development of reliable and efficient
group communication systems. In order to execute and verify program transformations they
have linked it to the NuPRL system.

For the purpose of machine developed and machine checked domain theory and program
verification, Reus has implemented synthetic domain theory [Reu99] a constructive variant of
domain theory in Lego. Other examples conducted with Lego include the formalization of type
theories and A-calculi [MP99], and a formalization of the strong normalization proof for system F
[Alt93].

The recurring pattern in all these experiments is the following. The programming language
that should be proven sound must be encoded into the language the theorem prover or the prover
assistant provides. For the theorem provers mentioned above this language is either a quantifier

CHAPTER 1. INTRODUCTION

free, a first-order, or a higher-order logic. Generally, the weaker the language, the more indirect
the encoding. On the one hand, inductive definitions and higher-order features allow very direct
encodings of programming languages. Constructs such as expressions, types, and inference rules
are typically inductively defined and higher-order representation techniques [HHP87, PE88]
allow direct encodings of variables and substitution concepts that are part of any programming
languages.

Thus in general, the expressiveness of a representation language is crucial for the attempt to
reason formally about programming languages. Reasoning about programming languages can
only be as effective as the encoding is — or to put the other way around: the more direct the
encoding is, the easier it is to reason about them.

Unfortunately, higher-order encodings and inductive definitions are incompatible since
higher-order encodings violate the positivity condition associated with inductive definitions
[DPS97]. Various attempts have been made to preserve the advantages of higher-order rep-
resentation techniques in a setting with strong induction principles [DH94, DFH95], but none of
these is entirely satisfactory from a practical or theoretical point of view. A first clean approach
towards a solution of this problem was the modal A-calculus [DPS97] that has been extended to
dependent types [DL98]. A more recent proposal is due to Gabbay and Pitts [GP99], and Hof-
mann has given a categorical semantics for relating higher-order abstract syntax and induction
principles [Hof99].

In this thesis, we describe a tool that provides higher-order representation techniques and
inductive definitions. It is a meta-logical framework and it is implemented in the Twelf sys-
tem [PS99b] and based on the logical framework LF [HHP93]. We discuss its design, its im-
plementation, and demonstrate how to apply it to problems from the field of programming
languages and logics. The Twelf system provides a special purpose theorem prover that draws
its deductive power from the elegance of encoding.

Design of the Meta-Logical Framework

The design of a meta-logical framework can be best motivated by an informal example. Con-
sider a developer who engineers safety architectures for mobile code such as proof carrying
code [Nec97] or typed assembly language [MWCG99]. The basic idea underlying safety archi-
tectures is that a "code producer" augments mobile code with explicit safety proof objects that
adhere to an a-priori specified safety policy. The code and the safety proof are then transmitted
together through the network to a "code consumer". Once received, the code consumer ex-
amines the code and extracts independently verification conditions which it then verifies using
the safety proof. If the proof checker signals success, the code can be trusted with respect to
the safety policy, and the code consumer can execute it safely. Among the many challenges in
devising a safety architecture is the design of a sound safety proof languages such as for example
a logic or a type system.

Without any machine support the developer has to engineer the safety proof language by
hand and verify its soundness using only pencil and paper. In general, this is a tedious, difficult,
intricate, and error prone process. Slight changes in the design of the safety proof language
can render months of hard work useless, leaving the developer without any other option but
to revisit all the proofs again. With the technology presented in this thesis, the developer can
formalize the safety proof languages such as logics and type systems, and reason about them
automatically and effectively. In many of the examples discussed in this thesis, the system was

able to check quickly if changes or extensions to a logic invalidate any of the desired properties.
Our meta-logical framework uses as representation language the logical framework

LF [HHP93]. It is a higher-order type theory which provides dependent types and higher-
order representation techniques. Judgments are formally represented as types and derivations
as objects. Logics such as the sequent calculi and the natural deduction calculi [Gen35] can be
directly encoded in the LF, taking full advantage of higher-order constructions. They directly
support common concepts such as variable binding, capture-avoiding substitution, weakening,
contraction, and exchange. For classical and intuitionistic logic, the representations are adequate
which means that objects in the type theory are in one-to-one correspondence with derivations
in a logic.

There are other logical frameworks, which are based on inductive definitions. To a large
extent they are implemented in the aforementioned proof assistants such as Coq, Isabella, Lego,
or Nuprl. Inductive definitions rely on the positivity condition that guarantees the set of con-
structors for each datatype to be fixed. From a modal theoretic point of view, we say that the
world in which a datatype is defined is closed, because datatypes must not be extended by new
constructors. Synonymously, we say that a closed world assumption is precondition for standard
inductive definitions.

In general, higher-order representation techniques violate the positivity condition, in partic-
ular deductive systems, which are of particular interest to this work: encodings of programming
languages and logics, for example, possess very elegant higher-order encodings that cannot be
expressed inductively. On the other hand, without higher-order representations, the developer is
obliged to declare the variables, substitutions, and contexts and to reason about their respective
properties, such as, for example, weakening, contraction, exchange, and substitution lemmas.

Nevertheless, one can reason about any object in LF (if functional or not functional) by
induction. The proof of adequacy of any representation, for example, is based on an inductive
argument over the structure of objects in LF. It is sound, because any object — including
functional objects — possesses a canonical form, and canonical forms in LF are inductively
defined [HP99]. Intuitively, the conversion of an object to a canonical form simply corresponds
to the execution of substitution operations.

Intrinsically, inductive definitions are closely related to function definition by cases. Any
proof of a property using standard induction principles can be realized as a total function that
expects input arguments in place of universal quantifiers and that computes witness objects in
place of existential quantifiers. These functions are defined by cases, and totality is established
as an external property of the function. Termination follows from comparing argument vectors
of recursive recalls to the argument vector the function was originally called with; they must
decrease according to a well-founded (terminating) ordering. And coverage relies on the closed
world assumptions; in every situation there are only finitely many cases to consider. Functions
defined by cases should not be confused with the notion of function provided by the logical
framework LF, which by construction cannot be defined by cases since they typically do not
possess canonical forms in LF [DPS97].

Therefore in this thesis, we propose to use two inherently different function spaces. The first
function space is parametric and it serves the purpose of adequate higher-order representation
of deductive systems with implicit treatment of variables and capture avoiding substitutions.
For the purpose of this work we have chosen the function space provided by LF since it satisfies
all requirements and supports adequate encodings. But in general, it is conceivable to extend
this work to other parametric function spaces defined in other logical frameworks, such as for

CHAPTER 1. INTRODUCTION

example the linear logical framework [CP96], or the calculus of constructions [CH88].
Second, we propose a recursive function space that encodes proofs or properties about deduc-

tive systems, such as the soundness of a logic, or the Church-Rosser property of the simply-typed
A-calculus. These functions range over LF objects of arbitrary (possibly functional) type and
can be defined by cases and recursion. The corresponding type theory, which is developed and
presented in this thesis, is called M%- When restricted to total functions, the type theory M2

can be viewed as a meta-logic. Theorems are encoded as types in M2, and proofs as total
functions called realizers.

The argument that a natural deduction representation of first-order intuitionistic logic is
equivalent to a sequent formulation makes use of both function spaces. The parametric function
space is used to represent the either of the two calculi whereas the recursive function space is
used to express that any derivation in one calculus can be converted into a derivation in the
other. Thus, from a programming point of view, M2 can be seen as the type system of a
functional programming language that uses LF as language to express datatypes.

If deductive systems are encoded via higher-order functions, M J-proof terms may need to
traverse A-binders in order to make a recursive call and each traversal of a A-binder corresponds
to the introduction of a new parameter. Intuitively, these parameters can be viewed as dynamic
extensions of the set of constructors of its type. Consequently, during runtime the set of con-
structors of any type is not fixed any more, which invalidates the closed world assumption. In
contrast, in our setting, inductive definitions are open-ended because recursive functions may
dynamically introduce new parameters as constructors. Therefore, inductive definitions are not
adequate for higher-order encodings.

On the other hand, the open world assumption that allows open-ended definitions of
datatypes does not present an appropriate foundation for the calculus of total functions we
aim to design in this thesis. On the contrary! Under the open world assumption it is impossible
to predict the canonical form of any LF-object. Therefore, the open world assumption cannot
give any guarantees if a recursive function covers all cases! From a modal point of view, it
is possible to argue that a recursive function covers all cases in some given world — but it is
impossible to argue that a recursive function covers all cases in any given world.

M2 's design is based on the following observation: In general, during runtime, recursive
functions follow always a few, but finitely many different patterns when traversing A-binders
before executing a recursive call. Therefore, datatypes are always extended in a regular and pre-
dictable fashion, in contrast to arbitrary extensions associated with the open world assumption.
It is this regularity condition that allows us to judge if a recursive functions over open terms
covers all cases. In this thesis we generalize the closed world assumption and simultaneously
restricted the open world assumption.

The result is the regular world assumption which allows datatypes to be open ended but
requires its extensions to be regular in structure. It enables us to reason about M2 proof terms
and to determine if they cover all cases. Each proof term is augmented with a description of the
world it is defined in, which ensures that only recursive functions defined in compatible regular
worlds can call each other.

Returning to the example, an .M^~-proof term that maps first-order natural deduction deriva-
tions to first-order sequent derivations has to recurse on open subformulas of universal formulas.
In the case of a higher-order encoding of terms, each traversal of the A-binder that represents a
bound variable extends the set of constructors. Clearly, those extensions are regular.

Under the regular world assumption, M2 is a type theory of partial functions that ranges

over higher-order and dependently-typed LF objects. That M.^ is also a sound logic to reason
about deductive systems is one of the main contributions of this thesis. Proof terms of M.\ are
recursive functions witnessing the provability of (meta-)theorems about deductive systems. For
this interpretation to hold, proof terms must be realizers, i.e. they are total recursive functions,
that make always progress and terminate eventually on every input.

More precisely, progress is given if case analysis covers all cases, a property that follows from
techniques similar to definitional reflection [SH93a]. Termination on the other hand follows if a
measure associated with each on recursive calls decreases every time a call is executed [R.P96].
Under these restrictions all proof terms of Ai^ are realizers and therefore M.\ as a meta-logic
is sound.

As consequence for the logic example, any total function in M.\ that niaps any natural
deduction derivation to some sequent derivation is a proof of the soundness of the embedding,
and vice versa, any total function in M.\ that maps any sequent derivation to some natural
deduction derivation realizes the completeness proof.

A similar approach toward the design of a meta-logic has been taken by Miller and McDowell
[MM97] with their system FOXAIN. FOXAlh is a meta-logic based on an intuitionistic first order
logic extended by natural number induction and inductive definitions [SH93b]. It supports the
representation of various logical frameworks, for example the intuitionistic and linear framework
of hereditary Harrop formulas [McD97]. The embedded logical frameworks are used to represent
deductive systems. Different from the soundness argument presented in this thesis, the soundness
of FOXAIN follows by a cut-elimination argument [MMOO].

From a purely logical perspective, M.^ is weak, since the only connectives defined for it are
universal, existential quantifiers, conjunction and truth. In addition it is restricted to conjunc-
tions of Il2-formulas, i.e. formulas that consist of a block of universal followed by a block of
existential quantifiers. There are no prepositional constants and it does neither provide impli-
cation nor disjunction nor negation nor equality. Nevertheless M.^ draws its representational
power from the underlying logical framework LF.

Because of the expressive strength of higher-order representation principles proofs in Ai£
are very efficient. For example substitution, weakening, strengthening, and exchange lemmas
are implicitly provided by LF, and therefore they do not have to be proven explicitly. This
is a tremendous win compared to systems that cannot use higher-order encodings due to the
positivity condition. Therefore, proofs in M.^ are in general shorter, more concise and more
elegant.

Implementation of the Meta-Logical Framework

The logical framework LF and the meta-logic M.^ are implemented in the Twelf system [PS99b].
In addition, we have implemented two proof search algorithms: one algorithm searches for LF
objects of given LF type, and the other search for proof terms in M.\ ■ Because of the judgments-
as-types and the derivations-as-objects paradigm, the LF-theorem prover is logic independent.

As opposed to traditional general purpose theorem provers which are designed to search for
derivations in a particular deductive system, such as for example first-order logic with or without
equality, Twelf's A'f.j'-theorem prover is considered to be special purpose theorem prover. It is
designed to reason about deductive systems in general, and logics and programming languages
in particular. In its current version, Twelf is designed to be mostly automatic. In particular, it
does not provide any mechanisms for user-specified tactics or tacticals. Neither does it employ

8

CHAPTER 1. INTRODUCTION

any form of rewriting. For each theorem we only specify a sequence of lemmas, the induction
variables-, and an upper bound for search. The proof is completely automatic in every other
respect.

The Twelf system is entirely written in Standard ML. The latest version is available through
the Twelf homepage http: //www. twelf. org.

Application of the Meta-Logical Framework

The technology presented in thesis can be used to reason about prototypes of new programming
languages, compilers, abstract machines, operational semantics, natural deduction calculi, and
sequent calculi. In particular, in this thesis we report on the deductive power of Twelf and many
experiments: In the area of programming languages for example, Twelf has been used to derive
several important properties about Mini-ML, that is a version of an ML-like language without
references, module system and exceptions. Mini-ML's operational semantics is type preserving,
and it is complete with respect to a reduction semantics. Furthermore, we have used Twelf to
show the completeness of compiling and executing Mini-ML programs on a continuation passing
machine, similar to the CPM machine [FSDF93].

The Church-Rosser theorem for the simply-typed A-calculus is the running example used in
this thesis. Using the standard decomposition of the development into a sequence of lemmas
Twelf can prove all of them automatically. It constructs a proof that is very similar to the one
given in [Pfe93].

Many of our experiments include meta-theorems about logics: We have used Twelf to show
the equivalence of natural deduction and sequent formulation of first-order intuitionistic logic.
Twelf has also shown that the Hilbert derivations can be transformed into natural deduction
derivations. For logic programming in the fragment of hereditary Harrop formulas, we have used
Twelf to show that the search for uniform derivations and resolution are equivalent.

It took Twelf less than seven minutes on a Pentium II/400Mhz to show that cut-elimination
holds for full intuitionistic logic. Consequently first-order logic is sound [Gen35].

Further examples stem from the area of category theory: Twelf has been used to show the
existence of an embedding from Cartesian closed categories into the simply typed A-calculus.
The experiments express that the theorem proving technology described in this thesis is powerful
enough to prove theorems far outside the realm of traditional theorem provers.

Twelf is currently actively used in other research groups for example at Princeton to inves-
tigate logics for proof carrying code [Nec97]. Appel, Feiten, and Felty for example are using
Twelf to build a generic architecture, that is applied in research on proof carrying code [AFOO],
and proof carrying authentication [AF99]. At Stanford, Stump and Dill are applying Twelf to
develop proof terms for decision procedures [SD99].

1.1 Contributions

The first contribution of this thesis is the design of the meta-logic M+. It is novel in that it
combines higher-order representation techniques and dependent types provided by the logical
framework LF types with inductive definitions, a combination that has never been attempted
before. One of the main consequences of this approach is that the closed world assumption
underlying standard inductive definitions is not general enough to accommodate arguments
over higher-order encodings; this observation leads to the regular world assumption that allows

10 1.2. OUTLINE

for dynamic and regular extensions of inductive definitions. M~% is sound by a readability

interpretation of its proof terms as total functions.
The second contribution is the implementation of the meta-logic M% in the Twelf sys-

tem [PS99b]. Because of higher-order representation techniques, proofs of difficult theorems
have still concise and elegant forms in M% ■ We have implemented two proof search algorithm,
one for LF and the other for M\- The expressive strength of LF together with the deductive
strength of M% makes Twelf a powerful meta-logical framework.

The third contribution is the application of Twelf to many problems. It has been successfully
employed to derive the meta-theory of a variety of examples from the areas of functional pro-
gramming languages, type theories, operational semantics, abstract machines, compilers, and

logics.

1.2 Outline

This thesis is organized in three parts. The first part is designed to give the reader an overview
about the background of LF and motivate how to use it as a representation language for deductive
system. Specifically, in Chapter 2, we use the example of the simply-typed A-calculus and the
standard reduction rules to motivate dependent types, higher-order representation techniques,
canonical forms and the desired adequacy of encoding. The simply typed A-calculus and its
meta-theory are the running example throughout this thesis. In Chapter 3, for example, we
prove a sequence of lemmas that eventually leads up to the proof of the Church-Rosser theorem.
Among others, we present the proof the diamond lemma in detail. The proofs of all lemmas
and theorems can be'computationally interpreted as functions, and they demonstrate thus the
design principles behind the type theory M.\ which we present in the second part of this thesis.
Specifically, first we motivate it in Chapter 4 and expose the necessity to dynamically extend
the set of constructors for LF types under the regular world assumption. In Chapter 5 then,
we make the informal constructions from Chapter 4 formal by defining appropriate judgments
and rules for M%- Informal proofs are represented as proof terms in M\- Moreover establish
two side conditions, coverage and termination, that informally enforce that all proof terms once
evaluated always make progress and are guaranteed to terminate. The meaning of M J-proof
terms is defined via a big-step operational semantics in Chapter 6; it is type-preserving, but
insufficient to show that all proof terms of M% are realizers. Therefore, we introduce a state-
based abstract machine, its transition rules and syntactic criteria for coverage and termination
in Chapter 7; the main result of this chapter is that any proof term in M% satisfying those two
criteria is a realizer, warranting that the interpretation of M j" as a meta-logic is sound. In the
third and last part of this thesis, we sketch the implementation of a proof search algorithm for
realizers in M%, we discuss its implementation in the Twelf system, and we demonstrate how
to use Twelf to prove the Church-Rosser theorem automatically in Chapter 8. Additionally, we
briefly report on other experiments already conducted with the Twelf system. Finally we assess
the results of this thesis and discuss future work in Chapter 9.

10

Part I

Background

11

Chapter 2

Logical Frameworks

2.1 Introduction

The development of programming languages is a challenging endeavor, and much more
widespread than one might expect at first glance. Besides standard programming languages,
such as C, C++, LISP, ML, and many others, there are scripting languages such as HTML,
XML, PERL, or TßX, and query languages such as SQL, or XQL which can be categorized as
programming languages.

We can make a very similar observation about logics. Logics are very important "languages"
to express properties about any kind of system. Specification logics, temporal logics, and modal
logics, are used in software engineering and model checking to describe large systems. Logics
are also used to describe properties of secure systems and they form the foundation for logic
programming languages.

If a developer follows sound design principles when drafting a programming language or
a logic, the user of the language will benefit from it; programs are easier to write, easier to
compile and very often easier to maintain. For example, a sound design principle underlying
functional programming languages is that the evaluation of programs preserves types. Similarly
a sound design principle underlying a specification logic is consistency. Since results such as type
preservation of an operational semantics and soundness of an inference system always express
properties about the designed language or logic, we call these results meta-logical properties. It
is very important to verify all desired meta-logical properties after each change in the design
of a programming language, e.g. adding new constructors to the language could violate type
preservation, and similarly, adding new connectives and new inference rules to a logic could
render it unsound.

In this work we are not concerned with the design principles themselves, but rather with tools
which support the design process. In this chapter we are primarily interested in the encoding
of systems such as programming languages, operational semantics, and logic calculi whereas in
the subsequent chapters we investigate and devise a system which allows the formalization and
automatic derivation of their meta-logical properties. Concretely, we begin with the presentation
of the simply-typed A-calculus with an appropriate reduction semantics for which we then give
its well-known encoding in the logical framework LF. It is the basis of the running example
which is used throughout this thesis: in Chapter 3, for example, we derive its Church-Rosser
property informally, in Chapter 4 formally, and in Chapter 8 automatically.

13

14 2.2. THE SIMPLY-TYPED A-CALCULUS

2.2 The Simply-Typed A-Calculus

The A-calculus has been introduced by Church [CR36] as a model for partial functions. Ini-
tially, it was only of theoretical interest and it served as a vehicle for the study of computable
functions. In particular it has be shown that each Turing-complete function is also computable
in the A-calculus and vice versa [Rog92]. A few decades later, with the growth of the field of
computer science, the A-calculus has gained a strong foothold in the area of basic computer sci-
ence and functional programming language. Specifically, with the programming language LISP,
a functional programming languages based on the A-calculus, it has gained a lot of influence,
and helped to shape the area of artificial intelligence.

The definition of A-terms (which we simply call terms below) is deceptively simple. A term

can be of the form

1. Xx.e, where A is a binding operator, x a variable and e is the body of the term,

2. e\ e2, where e.\,e2 are two subterms, or

3. x, simply a variable.

The term Xx.e\ can be interpreted as a function, which may be applied to an argument c2.
Strictly speaking (Xx.e\) e2 reduces by substituting e-2 for x in e\. an operation for which use
the following notation e\\e2Jx\. Any expression of the form {Xx.e{) e2 is called a redex.

How exactly reduction is executed is expressed by the operational semantics of the A-calculus
which is given by reduction rules. In general, reduction ride of the form UI.H => rhs can be applied
to any subterm of a given term; applying a reduction rule means to replace the subterm which
matches the shape of the left hand side His of a rule and replace it by the right hand side /•/*.$,
where the free schematic variables have been instantiated accordingly.

Xx.e. =>n Xy.e[y/x]

(A.r.ei)e2 =>ß ei[e2/.r]

Informally the first rule called the O'-rule allows arbitrary renaming of bound variables. It
requires that y does not occur freely in e already. The second ride is called /3-rule and it
simplifies redices. Therefore a redex is also known as ß-redex. In the example the application
of two identity functions to each other reduces to just one identity function:

{Xx.x) (Xy.y) =>0 {Xy.y)

We will not consider the a-rule any further because we can assume that substitution application
will avoid variable capturing. This is a quite common assumptions and easy to enforce. Replacing
x in e\ by e2 requires to first rename all variables in e2 away from variables in e\. This implicit
operation guarantees that the substitution can be safely executed [Chu40].

Types are an important vehicle in programming, because they can be used to capture invari-
ants. In this sense, the untyped A-calculus has only one type, because everything is a term, and
one cannot distinguish between functions and non-functions which attaches a rather misleading
meaning to the name "untyped" A-calculus. The more refined the concept of types, the more
invariants the type system can capture.

For the purpose of our example, we introduce now a simple type system which goes back to
Church [Chu41] and differentiates between atomic and function types. The syntactic formation
rules are expressed using standard extended Backus Naur form notation (EBNF):

14

CHAPTER 2. LOGICAL FRAMEWORKS 15

Types: r ::= a \ T\ -> r2

This refinement of the untyped A-calculus has its effects on terms: For the typing rules to be
sound which we will introduce below, we must endow bound variables with type information.

Terms: e ::= x \ Xx : r.e \ e\ e2

We call a term closed, if all variable occur in the scope of a A-binder. For example, the term
Xx : T.X is closed whereas Xx : r.y is not. Terms which are not closed are called open.

Types allow us to separate valid terms from invalid terms via a deductive system. In general,
deductive systems are defined by a set of judgments and a set of inference rules. A judgment
is an informal statement, the inference rules help to establish its truth in the following way:
A judgment is said to be evident, if it can be deduced from axioms by applying the inference
rules. For simplicity we think of axioms as inference rules without any premisses. For a very
enlightening presentation we refer the interested reader to the work of Martin-Löf [ML80].

We assert that a term e is valid by the judgment: "term e has type r" and which we
abbreviate with e : r. There are only two inference rules for this judgment which we give in
natural deduction style.

h x : T\

•" e : r2 h ei : r2 ->■ n h e2 : r2
■tplam tpapp

h Xx : r\.e : T\ -)• T2 h e\ e2 : T\

The rule tpapp is an inference rule with two premisses which reads: if the judgment e\ :
r2 —> T\ holds, and e2 : T2 then the judgment e\ e2 : T\ holds, too. The rule tplam-is slightly
more complicated, because it introduces an additional assumption marked by the label u which
is discharged when the rule is applied. Note that there are no axiom rules. Deductions can only
be closed by introduced hypotheses.

Going back to the previous discussion, the introduction of types and the typing relation
makes a distinction between valid and invalid terms possible: A term e is valid if there is a type
T and e : r is derivable from the two rules above. If not, it is invalid. For any type r the term
(Xx : T.X x) for example is invalid, because when considering the body of the term, if x has type
r, the rule tpapp is not applicable, and neither is tplam.

The reduction rules from the untyped A-calculus endowed with types at the variable binders
form the reduction rules for the simply-typed A-calculus.

Xx : r.e =>a Xy : T.e[y/x]
(Xx-.T.ei)e2 =>ß ei[e2/x]

On the more pragmatic side, there are terms in the untyped A-calculus which allow infinitely
many applications of the reduction rules, as for example:

(Xx.x x) (Xx.x x) =^ß (Xx.x x) (Xx.x x) =^ • • •

15

16 2.2. THE SIMPLY-TYPED A-CALCULUS

This particular infinite rewrite sequence cannot be derived with the reduction rules in the simply-
typed case if we stipulate that we are only working with valid terms. As we have seen, the term
{Xx : T.X x) cannot be assigned a type, and hence, all'terms in this rewrite sequence are ill-typed.
As a matter of fact, we can show that for each well-typed term, there is only a finite sequence
of reduction step before no reduction step is applicable no more. The right-most term of such
a sequence is called a normal form, of the initial term, and as we will discuss now, it is always

unique.

2.2.1 Reduction Relations

The reduction rules of the simply-typed A-calculus are commonly used to assign meaning to a
term. One way of doing this is to identify all terms that reduce to the same result as a class, and
to pick one witness of the class as a semantic representative. Is this semantic well-defined? Is
it sound? Needless to say, that in order to decide if two terms mean the same thing we have to
check that they are in the same class. Is it possible to calculate the class representative for each
term quickly and effectively? Is the meaning of each term unique? In this section we formally
define an appropriate reduction relation for the simply typed A-calculus for which we prove the
unique existence of class representatives in Section 3.2. This class representative is commonly
referred to as normal form.

Informally, we apply the /3-reduction rule in the following way: for a given term, select a
subterm, match it with the left hand side of a reduction rule and then replace it by the right
hand side. In the following, we make this more precise. To assert that a term e reduces to a

term e! in one step, we use the judgment e —> e'. The rules which define this judgment are as
follows:

 rbeta

{Xx : T.ej) e2 —> ex[e2/x]

e —> e
rlam

Xx : T.e —>■ Xx : r.e

ei —> ex e2 —> e2
rappi rapp2

1 , ' l , i e\ e2 —> el e2 e\ e2 —> e,\ e2

For any given term, there might be more than just one possibility to apply a reduction rule.
Consider for example the well-typed term Xx : T.{Xy : T.y) ({Xz : T.X) X) which can reduce in
one step to two different terms: Xx : T.(XZ : T.X) X and Xx : T.(Xy : r.y) x. First, the body of
the entire expression is amenable for /^-reduction as this derivations shows:

 rbeta

(Ay : T.y) {{Xz : T.X) X) —> {Xz : T.X) x
 rlam

A.T : T.{Xy : T.y) {{Xz : T.X) X) —> Xx : T.{XZ : T.X) X

16

CHAPTER 2. LOGICAL FRAMEWORKS 17

Second, the argument inside the body is also amenable for ^-reduction.

 rbeta
(Xz : T.X) x —> x
 rapp2

(Ay : r.y) ((Xz : T.X) X) —> (Ay : r.y) x
— r|am

Xx : T.(Xy : r.y) ((Xz : T.X) X) —> Xx : T.(Xy : r.y) x

Repeated applications of single-step reduction sequence are captured by the multi-step reduction

relation: If, for example, ex —> e2 and e2 —> e3 and e3 -U e4, then we write ei -^ e4.
Clearly, e —> e' is again a judgment, which we define by two inference rules.

e —> e e —> e ^
 rid rstep

* > * 11 e —y e e —> e

Finally, we define the conversion relation as the reflexive, transitive, and symmetric closure
of the multi-step reduction. e\ and en are convertible if and only if the new judgment e\ <—> e2

is derivable using the following inference rules:

n e ~^ e> J e i—*■ e' reumm e ^—^ e' e' <—> e" rrefl rred rsymm rtrans
e <—> e e <—> e' e' <—> e e <—> e"

It is very easy to see, .that there is a derivation of Xx : T.(XZ : T.X) x <—> Xx : r.(Xy : r.y) x.
To guarantee soundness of the reduction semantics, we need to show the well-known Church-

Rosser property, that is that any two convertible terms reduce to the same unique normal form
given that their reductions terminate. The informal development of this proof will be the main
content of Chapter 4. But first, we investigate possible formalizations of the simply-typed A-
calculus in a logical framework, their advantages and their disadvantages.

2.3 Methodology of Representation

The first step, when using a computer to facilitate the design and the formal development of
a programming language or a logic, is to choose an appropriate formalism to represent these
abstract systems or object, languages as we sometimes call them, in order to make them amenable
for algorithmic manipulation and automated reasoning. As a matter of fact, as we show in
this thesis, this point cannot be overemphasized. We will see, the more elegant and direct a
programming language can be represented — in our example the simply typed A-calculus —
the easier it is to do the second step namely to specify meta-theoretic properties, such as the
Church-Rosser theorem.

Even though the formalism to represent an abstract system is called a meta-language in the
literature [HHP93, McD97] we will not adopt this name in order not to confuse the reader with
the continuous overloading of the term "meta". Throughout this thesis, we use the word "meta"
only to refer to the reasoning layer, the upper level above the representation layer in Figure 2.1.
For us, the informal description and the formal representation of a programming language is
very close and natural, and since the adequacy of representation is the most basic assumption,
we can almost identify the informal and formal representation of an abstract system. Instead of

17

18 2.3. METHODOLOGY OF REPRESENTATION

Informal Reasoning

Church-Rosser theorem
Cut-elimination theorem
Type preservation properties

Informal Specification

Simply-typed A-calculus
Logic calculi
Operational semantics

Logical Framework

Type theory LF
Judgments-as-types
Derivations-as-objects

Process of representation/fornialization/encoding

Figure 2.1: Methodology of representation

meta-language, we adopt the common name logical framework for the representation language,
and we speak of the encoding of an abstract system, such as the simply-typed A-caleulus, as the
image of the representation in the logical framework.

In this section, we motivate and describe the minimal requirements we stipulate for the
representation language, which gradually leads to the definition of the logical framework LF
[HHP93]. We also review other logical frameworks, such as the calculus of constructions [Coq86].

2.3.1 Type theory

The challenge in representing a programming language or a logic which is specified via a de-
ductive system is to define suitable concepts to represent its components: the set of judgments
and the set of inference rules. In the past few decades approaches based on type theory have
prevailed. The underlying paradigms suggest to use types to represent judgments, and objects
to represent derivations. To show that "a judgment is evident" reduces in type theory to the
construction of an object, the so-called witness of a type corresponding to the judgment. If
such a witness exists the type is called inhabited, otherwise uninhabited. Within this paradigm,
judgments are hence represented as types and derivations as objects.

In order to validate formal arguments about derivations in a deductive systems, we must be
sure that the objects in the logical framework that are being manipulated naturally correspond to
derivations in the deductive system and vice versa. Therefore, it must be a priori enforced, that
all derivations of a deductive system stand in one-to-one correspondence with their encodings.
This requirement provides the central justification of formalization and formal reasoning in
general, it must not be destroyed by any extensions to the logical framework.

2.3.2 Higher-order abstract syntax

The issues which arise when representing the simply-typed A-calculus from the Section 2.2 in a
logical framework are manifold. We hence tackle them, one by one, and we start with a tech-
nique called higher-order abstract syntax. Higher-order abstract syntax provides an extremely

18

CHAPTER 2. LOGICAL FRAMEWORKS 19

brief and elegant way of representing variables, and capture-avoiding substitutions. In our first
example of the untyped A-calculus, terms were defined by the following, syntactic rules:

Untyped terms: e ::= x \ Xx.e | e\ e2

Implicitly, this syntactic description defines a judgment and a set of inference rules. It is
very important to understand the elegant uniformity since it is a recurring scheme throughout
this thesis, and only a deep understanding of this technique can explain the benefits of all the
techniques which are developed and discussed in subsequent chapters. The judgment induced
by the syntactic rules above is simply "is an untyped term" for which we simply write "term",
and the inference rules are:

■ x
term

term term term
lam* apP

term term

Note, that the treatment of variables is implicit in these rules. There is no need for a rule which
states that a: is a term, since this assumption is dynamically introduced by the lam rule and
discharged thereafter. There is a crucial difference in presenting the syntax of terms in EBNF
or as a deductive system. In the former case, one might first think of representing variables as
strings, or integers, or some other auxiliary construct, which would lead to the representation
of the two judgments as type "term" and type "var"

term : type
var : type

which, hypothetically speaking, would lead to the following representation of the object con-
stants: "var" of type var —> term which coerces variables to terms, "lam" of type var ->• term ->
term, and "app" of type term -> term —>■ term:

var
lam
app

var —> term
var —» term —> term
term -» term -> term

In the later case, on the other hand, one might be inspired to represent the variable of the
untyped A-calculus by a variable provided by the logical framework. This is the concept which
we predominantly use in this thesis and it is called higher-order abstract syntax [PE88]. It leads
to a much simplified representation of terms: we only need to represent one judgment, namely
term. Formally, we write that rtermn = term, where the "term" on the left of the equality
symbol is the judgment "term", and the "term" on the right is a type. The representation
function maps judgments to types and derivations to objects and is written as r-n.

term : type

Using this technique, we can inductively define the encoding of the untyped terms by repre-
senting each of the inference rules. In the case of the A-binder, we must dynamically introduce a

19

20 2.3. METHODOLOGY OF REPRESENTATION

new bound variable, x. Note that the A-binder to the right of the equality sign is the A-binder of
the logical framework. The e to the left of the equality symbol represents the derivation of the
premiss. Throughout the thesis, we will name the newly defined object constants in correspon-
dence with the names of the rules they are representing. This greatly improves the presentation
of this material. In addition, it is always be clear from the context what a name refers to.

r "i
 x
term

e
term
 lam3'

term = lam (A:?:. ren)

In a similar, but much easier way, the application rule is represented by an object constant
"app". ei and e2 are simply symbolic names of the derivations of the premisses.

r ~\

ei e2

term term
 app

term = app re\~i ve-P

In summary, the representation of the lam and the app ride are two object constants, with
corresponding names. Note that the type of "lam'" expresses that it expects a function as
argument.

lam : (term -4 term) —» term
app : term —>• term —> term

As a side remark we want to point out, that both possibilities are correct in the sense that it
is possible to identify A-terms with their images in the type theory. Such an encoding is called
adequate. We discuss the problems related to adequacy in the the next subsection.

Why is the encoding using higher-order abstract syntax preferable? We make the following
observation: Closely associated with the notion of a variable is the notion of substitution. If
A-terms were encoded as suggested in the first solution with "var" and "term", the reduction
rules could not be represented directly, because the notion of substitution has to made explicit.
As example, consider the left hand side e^e^/x] of the /3-reduction rule from Section 2.2. In
addition, the properties of substitutions must be analyzed and proven explicitly in order to take
advantage of them.

Lemma 2.1 (Substitution) If e\ : term with zero or more occurrences of the variable x : var,
and C2 : term,, then there exists a term e', where all occurrences of (var x) have been replaced by

Proof: The proof goes by induction over e\. □

Even though it is easy in this particular example, substitution lemmas require in general very
tedious and time consuming proofs in more complicated settings. In addition, experience has
shown that lemmas of this form are quite common when experimenting with programming
languages and logics. Most likely their mere existence will pollute the proof search of subsequent

20

CHAPTER 2. LOGICAL FRAMEWORKS 21

lemmas in the implementation which is being discussed in Chapter 8. For larger examples, such
as the entire simply-typed A-calculus (see in Section 2.2) including a typing relation and more
(to be discussed in Section 3.2), proving these kind of lemmas is a necessary, time-consuming,
and simultaneously not very rewarding activity. Therefore, it is of great benefit, if the treatment
of variables and substitutions is implicit.

On the other hand, if we represent terms with higher-order abstract syntax, the substitution
lemma comes for free by the means of the representation. rei[e2/x]"1 for example is encoded
by the /3-rule of the logical framework. Since rXx.ein = lam (Xx : term. rein) where rx~* = x,
it follows that (Xx : term. rein) is a function of type term -> term. Moreover, by construction,
if we apply this function to any other term all variables x are being replaced by the argument
term, hence force executing substitution in the A-calculus. Consequently, the representation of
the left hand side of the /3-rule in our object language is simply

I rei[e2/x]~1 = (Xx : term. rein) re2

where the juxtaposition to the right of the equality symbol is the application operation of a
function to an argument provided by the logical framework.

The difference between first-order and higher-order representation techniques is that with
first-order representations the concept of substitution and the substitution application mecha-
nism must be explicitly defined and the associated properties explicitly proven. With higher-
order representations on the other hand, we can use the variables and notion of substitution
from the logical framework and inherit all associated properties for free. Naturally, when us-
ing higher-order representation techniques, the proof of adequacy is more complicated and less
direct then in the first-order case. The adequacy of representation is essential in our approach
and therefore discussed in the next subsection.

2.3.3 Adequacy

Deductive systems and their representations in a logical framework must correspond to each
other. The reason is that any derivation in the deductive system should be representable as
an object in the type theory and vice versa. In particular, after mechanically manipulating
objects in the type theory, we must be certain that the results correspond to derivations in the
deductive system. In addition, if higher-order abstract syntax is used, the representation must be
compositional, i.e. /3-reduction provided by the logical framework corresponds to substitution.
This correspondence is called adequacy. The untyped A-calculus can be represented in a very
simple logical framework, as we have seen in the previous subsection namely the simply-typed
A-calculus (which would be the logical framework). On the other hand, representing the simply-
typed A-calculus from Section 2.2, requires a refined logical framework to guarantee the adequacy
of encoding which we motivate in this subsection, and which discuss in detail in Section 2.4.

In Section 2.2 we have encountered well-typed and ill-typed terms. Since every simply-typed
term e can be embedded into the untyped A-calculus, clearly re~" : term, but on the flip side,
every ill-typed term e' can also be embedded: re'n : term. The encoding is hence not adequate.
It is not because there are too many objects of type "term", many more then there are well-typed
simply-typed terms.

This observation motivates the solution which has been widely accepted in the literature. In
order to preserve the adequacy of the encoding, we must partition the type "term". This can be
done by indexing it. But by what? The best solution is to index it by the type which all objects

21

22 2.3. METHODOLOGY OF REPRESENTATION

in this partition share! Intuitively, we partition the the set of objects of type "term", into subsets
corresponding to the different types. We will see that these subsets are pairwise disjoint because
typing is unique (by Lemma 2.7). A consequence is, that by construction, ill-typed terms do not
belong to any of those partitions. Therefore, strictly speaking, the union of all index partitions
yields the set of simply-typed terms we are interested in but there is an additional partition;
the partition of all ill-typed terms. In order to distinguish non-indexed from indexed types we
continue to call the former type and the latter type family.

In order to represent simply-typed terms, we combine the syntactic formation rules for well-
typed terms and their typing rules, as discussed in Section 2.2. The resulting deductive system
is described by a judgment "is a term of type r", or short "term r", and the two inference rules
are given below.

term T\

term T2

lam3
term (r2 -> T\\

term T\ term {T\ —> r2)

The representation of the judgment is defined by

rterm rn = term rr~l

term T2
app

where the juxtaposition to the right of the equality symbol is the type application operation
provided by the logical framework, which we will discuss in Section 2.4. For the remainder of
this section, it is sufficient to read the argument to the type family term as index.

Similarly to the representation of the untyped A-calculus, we obtain two equations, one for
the lam rule

term T\

e
term r2

lamT

term (TJ —> r2) = lam (A.

and another for the app rule

r

ei
term (r2 —> T\ i)

e2

term r2

= lam (Xx : term rri~l. ren) : term rT\ —> T2~

app
term T\ app rein re2

n : term rT\

which implicitly define the constants lam and app. Types of the simply-typed A-calculus are
represented by tp : type, and

T\ r2
n = rTin arrow rr2

n

where "arrow" is a constant defined in LF. For better readability we use it as an infix operator.
In summary, the representation of simple types, the judgment "is a term of type r" and the

22

CHAPTER 2. LOGICAL FRAMEWORKS 23

tp
arrow

term
lam
app

type
tp —> tp —» tp

tp ->type
(term Tx ->■ term T2) -» term (Ti arrow T2)
term (T2 arrow Ti) ->■ term T2 ->■ term Ti

Figure 2.2: Type and term constant declarations

inference rules lead to the constant declarations depicted in Figure 2.2. "tp" is a type, "term"
is a type family, and both are alternatively called type constants, "arrow", "lam", "app" are
object constants. In order not to confuse the type with the object level, we follow the standard
definitions in the literature [HHP93], and call the type of a type constant kind, and continue to
call the type of an object constant type. The uppercase variable names Ti and T2 are universally
quantified place holders that can be instantiated with any type T\ and T2.

As a matter of fact, the distinction between objects, types, and kinds define already the
syntactic hierarchy we require from a logical framework. A complete list of type and object
constant declarations is called a signature, complete in a sense, that each type and each kind
used in the signature does not contain any undeclared type or object constants.

We return to the question of adequacy. An encoding is adequate, if each derivation in the
deductive system has exactly one counterpart in the type theory and vice versa. The adequacy
result for the representation of types is in one direction a straightforward inductive argument.
Let oi,..., an be atomic types, which are directly represented in the logical framework as object
constants a\ : tp ... an : tp.

Lemma 2.2 (Adequacy of representation of types I) If T is a type, then rrn : tp

Proof: by induction on T:

Case: T — a^.

di : tp by assumption

Case: T = T\ -)■ T2

rrr tp
rr2^ : tp
rTi~1 arrow rr2

n : tp
rT\ -» T-p : tp

by i.h. on T\

by i.h. on r2

by application provided by the type theory
by definition

□

23

24 2.3. METHODOLOGY OF REPRESENTATION

The second direction is not more complicated, but it requires that the objects of the logical
framework can be analyzed structurally, i.e. an object must have only finitely many shapes. This
requirement is clearly not satisfied for types. Consider for example the following three objects:

(Xx : tp. x) a\

a i

(Xx : tp.ai) 0,2

(2.1)

(2.2)

(2.3)

Obviously, all three have type tp. Moreover, if one stipulates the existence of an appropriate
/3-rule in the type theory (as one can), all three of them reduce to o.]. In other words, there are
too many objects in the type theory corresponding to exactly one derivation in the deductive
system, hence violating the desired and required one-to-one correspondence between derivations
and objects, and hence clearly violating the adequacy of the representation.

What can be done? The answer comes naturally. We consider only those objects in the LF
type theory, which are canonical, i.e. objects which cannot be reduced any further. In essence,
the logical framework we are motivating here, guarantees the existence of these canonical forms
for every well-typed object. The canonical form theorem is essential to the whole thesis, and
is discussed in more detail in Section 2.4. But note, that it is implicitly already used here:
a canonical object T : tp of the logical framework has always the shape of either of the two
/3-normal forms: T = a; or T = T\ arrow T-/.

Lemma 2.3 (Adequacy of representation of types II)
IfT:tp is canonical then T = rr~1 and r is a type.

Proof: by induction over the canonical forms of T:

T = en

T = raP
a.,, is a type

by assumption
by assumption

T = Ti arrow T2

T\ = rTy~l and T\ is a type

T2 = rT'P and T2 is a type
r7~i —¥ T<p = rTin arrow rT-P — T\ arrow T2
T\ —> T-2 is a type

by i.h. on T\

by i.h. on T-2
by definition

by syntactic rule

D

In a very similar way, we can prove the adequacy of the representation of terms by structural
induction. But in this example, /3-normal forms do not describe uniquely the possible shapes of
an object of type term: Consider for example the two objects:

lam (Xx : term (a\ arrow «2). lam (Ay : term a\. app x y))

lam (A.T : term (a\ arrow 02). lam (app x))

(2.4)

(2.5)

24

CHAPTER 2. LOGICAL FRAMEWORKS 25

Both objects have type "term (a\ —>• 02) —> a\ —>■ 02", and they correspond to the same
derivation:

y
term (ai —>• 02) term ai
 app

term a<i
y lam

term a\ —> 0,2
 \zmx

term (a\ -4 02) —> ai —> 02

The difference between the two terms is one application of the so called ^-reduction rule,
which is also part of the logical framework:

Xx : A. M x =>v M if x does not occur in M

For adequacy, besides being /3-normal, the term must be in 77-long form, i.e. the r/-rule must be
applied in reverse direction until the term cannot be expanded any further without introducing
a /3-redex. Canonical objects are always in /3-normal and 77-long form. We leave the details to
Section 2.4. In our examples (2.2), (2.4) are canonical, and (2.1), (2.3), (2.5) are not.

Since they exist, canonical objects can be analyzed according to their structure. Note, that
this observation holds for objects of atomic and of functional type. Any closed canonical object
E of type "term T" has one of two possible shapes:

E = lam E' where E' : term Ti ->• term T2

and T = Ti arrow T2

E = app Ei E2 where Ex : term (Ti -> T)
and E2 : term T\

Any closed canonical object E of type term T\ —> term T2 has one of three possible shapes.

E = Xx : termTi.x where Ti = T2

E = Xx : term Ti. lam (£7' re) where (£" a?) : term T3 -> term T2

E = Xx : term Ti. app (Ei z) (E2 :r) where (T^j a;) : term (T3 arrow T2)
and (£^2 %) '■ term T3

The adequacy theorem follows by two simple structural inductions, the proofs of the indi-
vidual cases proceed in a similar fashion as the ones for types.

Lemma 2.4 (Adequacy of representation of terms)

1. If e :: term of type r which may rely on assumptions of the form x\ :: term T\, ... ,xn ::
term rn then ren : term rr~1 which possibly contains variables of the form x\ :
term ri~in,... ,xn : term rTn

n.

2. If E : term rr~l is canonical, possibly containing variables of the form xi :
term rrin,... ,xn : term rTn~i, then E = ren where e :: term r which may rely on as-
sumptions of the form, Xi :: term TI, ..., xn :: term rn

Proof: by structural induction over e, and E. D

25

26 2.3. METHODOLOGY OF REPRESENTATION

All that remains to be shown for the adequacy of encoding of terms is compositionality,
i.e. that the /3-rule of the logical framework can be used to represent substitution application.
Compositionality is not important for the adequacy of the representation of types, since it does
not employ higher-order abstract syntax, but is very important for the adequacy result for the
representation of terms.

Consider a term e\, with a free variable x. After unfolding the syntactic formation rules, e\
is a derivation of the following form

 x
term T2

term n

and its representation in the logical framework is a function:

term r2

ei
term T\ = Xx : term rr-p. re\n : term rT2~

1 -» term rrin

Given another term e2 of type r2, informally, the substitution means to replace all occurrences
of x in e\ by the new derivation of e2 :: term T2. The representation of e2 yields

r'e<P : term rT2~
1

Clearly, the term (Xx : term rT2
n. rel~

1) re2"
1 is well-typed, and it has a canonical form, but does

it correspond to the rei[e2/:rp? The answer gives the compositionality lemma which is typically
considered part of the adequacy property. It can be easily proven by structural induction given
a precise definition of substitution, which we omit here.

Lemma 2.5 (Compositionality) If e\ is a well-typed term which, is hypothetical in x ::
term T,X-\ :: term, T\,... ,xri :: term, rn and e2 is a. well-typed term, of type r, then

re,\[e2/x]n = (Xx : term, rT2n.rein) re2~'

Proof: by structural induction over e\. D

Consequently, the representation of the /3-rule of the simply-typed A-calculus as we intro-
duced it above, is perfectly sound. The /3-reduction rule of the logical framework can be used
as a vehicle to represent substitutions.

2.3.4 Summary

Based on the principles we have introduced in this section, we can use logical frameworks to
reason formally about deductive systems. Judgments are represented as types and derivations as
objects. Consequently inference rules are encoded as constants. In this work, we consider only
logical frameworks that provide a notion of objects, a notion of types, and a notion of kinds;
in particular, in the next section we discuss the logical framework LF, that provides dependent
types, and it satisfies the property that each object, each type, and each kind possesses a
canonical form. It allows us to use higher-order representation techniques while preserving the
adequacy of the encoding.

26

CHAPTER 2. LOGICAL FRAMEWORKS 27

2,4 The Logical Framework LF

There are many logical frameworks suitable for the representation of deductive systems. The
logical framework based on the simply-typed calculus, such as Isabelle [Pau94] requires extra
infrastructure to guarantee adequacy theorems. For this work, however, we restrict our consid-
erations to a logical framework that provides dependent types, such that LF [HHP93]. Indeed,
dependent types facilitate adequate higher-order encodings. Thus, we have chosen LF as the
framework of choice for this thesis. In future work we plan to extend this work to other log-
ical frameworks, such as for example the calculus of constructions [CH88] or the linear logical
framework [CP96].

In this section we give a detailed overview over the language, the judgments, the inference
rules and the meta-theory of LF. Many, if not all of these results go back to the work of Harper,
Honsell, and Plotkin [HHP93], and the interesting reader is referred to an excellent tutorial by
Pfenning[PfeOO]. A detailed discussion about canonical forms in LF can be found in [HP99].
These are the three standard references for this section.

2.4.1 Syntax

Most of the syntactical constructions have been motivated in the previous section. All of them are
present in the logical framework LF. LF's notion of dependent type provides enough expressive
power to warrant adequate representations of judgments as types, which we denote with A.
Kinds K are needed to classify well-formed type families. The formation rules for objects M
admit constants c, variables x, application M1 M2, A-abstraction Xx : A.M. Types are formed
from type constants (or type families) a, type application A M, and dependent types Ux:A1.A2.
A dependent type binds an object variable x, and allows other types in its body to dependent
on it. In other words, Uxi : AX.A2 is a generalized function type Ax -> A2, where the variable
x is permitted to occur in the type A2. As a matter of fact, we use the notation Ax -+ A2 if the
variable x does not occur in the type A2. Consider for example our slight but not unreasonable
simplification of the type of the "lam" constant

lam : (term Tx -> term T2) -> term (Tx arrow T2)

Strictly speaking (term 7\ ->• term T2) -»■ term (I\ arrow T2) is not a type but a family of types,
since neither Ti nor T2 are declared anywhere. To transform it into a real LF type, we need to
build the n-closure and obtain

lam : IITi : tp. nr2 : tp. (term T: ->• term T2) -»■ term (Ta arrow T2)

Note, that Tx and T2 are object level variables. There is a drawback to this complete notation;
whenever the object constant lam is used, it must be first applied to its domain and its range type.
Intuitively, this seems unnecessary since they can be easily be inferred from their positions and
occurrences in the type itself. They must be types: tp! Indeed, it is safe to omit these implicit
arguments if one uses the reconstruction algorithm proposed by Conal and Pfenning [PE88].
For better presentation, we hence omit inferable leading ü-abstractions throughout this thesis,
without further mention. The reader should bear this in mind.

Kinds: K
Types: A
Objects: M

:= type \Hx: A.K
:= a\ AM \Ux : Ai.A2

:= c | x | Mi M2 | Xx : A. M

27

28 2.4. THE LOGICAL FRAMEWORK LF

The representation of a deductive system is a set of constant declarations. Type constant
declarations represent judgments, and object constant declarations represent inference rules. A
collection of these declarations is called signature, which we denote by E. Similarly, we introduce
the notion of a context as a collection of variable declarations x{ : Ai,...,xn : An which we
denote by T. Contexts play an important role when we define the semantics and validity of
object, types, and kinds.

Signatures: E ::= • | E, c : A | E, a : K
Contexts: T ::= -\T,x:A

The • stands for an empty signature and an empty context. We simply omit it (and the
following ",") if the signature and the context arc non-empty not to clutter the presentation

unnecessarily.

2.4.2 Semantics

The semantics of LF type theory is defined by a set of of judgments and inference rules. Among
the necessary judgments we must specify what are valid objects, types, kinds, signatures, and
contexts. Note, that the following judgments are all indexed by the signature E, but we can
consider it fixed for all our purposes, and therefore we take the liberty to omit it from the rules
given below.

Judgments:

Valid kinds: r hv K kind
Valid types: T\-J:A:K

Valid objects: T hs M : A

Valid signatures: h S sig-
Valid contexts: hs r ctx

In Section 2.2 and Section 2.3, we have encountered two reduction rules, namely the ß- and
r/-rule. As above, these rules also exist in the dependently typed setting, and they define a
congruence relation on objects, kinds and terms, which allows us to identify all objects which
do have the same unique canonical (i.e. /5-normal, r/-long) form. Canonical forms exist because
of Theorem 2.6 below. Its proof depends on the congruence judgments to include typing infor-
mation, but in this presentation omit it from the rules below in order to keep the presentation

clean.

Congruence on kinds: K\ = Ki kind
Congruence on types: A\ = A2 '■ K
Congruence on objects: M\ = M2 : A

Rules: Most of these judgments are mutually dependent, i.e. inference rules of one judgments
are defined in terms of another. The rules defining these eight judgments are all standard. We
start with the presentation of the typing rules of kinds.

28

CHAPTER 2. LOGICAL FRAMEWORKS 29

r h A : type Y,x:A\-K kind
kndtyp kndpi

T h type kind T\-Ux:A.K kind

YhA:K K = K' TV-K': kind

Yh A:K'
kndcnv

The typing rules for types and type families are defined as follows. They extend the simply-
typed A-calculus from the Section 2.2.

£(a) = K
 famcon
Yha:K

r h Ax : lix : A2. K V \- M : A2 Y <r Ai : type r, x : Ax h A2 : type
 famapp fampi

r h Ai M : K[M/x] Y h Ux : AX.A2 : type

Note that in the rule famapp, the free occurrence of x in K must be replaced by the object
M. A very similar replacement takes place in the rule objapp.

£(c) = A _ T{x) = A
 objcon objvar
The: A Thx:A

Y h Ai : type I1, a: : Aj h M : A2 . r H Mx : üx : A2. Aa T h M2 : A2
— objlam objapp

T\- Xx-.Ax.M :Ux: AX.A2 YVMXM2: Ax\M2jx\

T h M : Ai Ax = A2 T h A2 : type

r h M : A2

■ typenv

The rules for signatures are standard. Note, that the type A, and kind K in the rules sigobj
and sigfam are well-defined in the signature to the right of the declaration.

h S sig • h A : type h S sig • h Ä" kind
sigemp sigobj sigfam

I- • sig h S,c : A sig hE,a:if sig

Similarly, the validity of Y is established by the following rules.

h r ctx r t- A : type
ctxemp ctxobj

I- • ctx h T, x : A ctx

Throughout any typing derivations of object, types and kinds, Y must always remain valid.
Instead of enforcing this condition locally, we push this well-typedness condition all the way to
the axioms. Read from the bottom up, contexts always increase. Hence, we must extend kndtyp,
famcon, objcon, and objvar with this additional premiss. In order not to clutter the rules, we
leave these premisses implicit, too.

The logical framework contains two rules for definitional equality: the ß- and the 77-rule.
As we have discussed in Section 2.3, the /3-rule is helpful in the representation of substitution
lemmas. In Chapter 4 we will see further applications of this hard-wired substitution principle
of the framework.

29

30 2.4. THE LOGICAL FRAMEWORK LF

ß
(Xx:A.M1)M2 = M1[M2/a

V
(Xx : A. M x) = M x not free in M

Similar to the observation in Section 2.2.1 these two rules can be applied to any subterm of
an object, or a type, or even a kind. In order to make this kind of application entirely precise,
we define a conversion relation, naturally, one for each level. First, the conversion relation is
turned into an equivalence relation by building the reflexive, transitive, and symmetric closure.

K-
kndrefl

= K

K2 = Ki
 kndsym
Ki=K2

Kx = K2

Kx

K2

= K3

kndtrans

famrefl
= A

A2 = A,
 tamsym
A,=A2

Ai = A2 A2-: = AK
A = Ai = A,

tamtrans

 objrefl
M2 = Afi
 objsym

Mi = M2 M2 = M3 objtrans
M = M Mi=M2 Mi= M-A

And second it is turned into a congruence relation =; conversion can be applied to subterms.

A = A' , , , K = K' , , .
cngkndpil cngkndpir

Ux :A.K = Ux:A'.K Ux : A. K = Ux : A. K'

A = A' , . M = M'
cngfamappl cngfamappr

AM = A'M AM = AM'

Ai = A\ A2 = A2
cngfampil cngfampir

HE :AI.A2 = Ux : A\. A2 Ux : A{. A2 = Ux :AX.A'2

A = A' ... , M = M'
cngobjlaml cngobjlamr

Xx :A.M = Xx : A'. M Xx : A. M = Xx : A. M'

Mi =M[M2 = M.2
cngobjappl cngobjappr

Mi M2 = M[M2 Mi M2 = Mi M2

This concludes the formal presentation of the rules for the logical framework LF. The signature
of Section 2.3 is in fact a LF signature after appropriate reconstruction of the types. More
examples can be found in Section 2.5, where we encode the rewrite relations from Section 2.2,
and in Chapter 4, where we will represent the Church-Rosser theorem based on an argument of
parallel reduction.

2.4.3 Canonical Forms

In Section 2.3, we have seen that canonical forms are indispensable for the adequacy Lemma 2.3
and Lemma 2.4. Canonical forms are /3-normal, 77-long forms. Formally, this property is

30

CHAPTER 2. LOGICAL FRAMEWORKS 31

reflected in two mutually dependent judgments: the judgment about canonical forms and
the judgment about atomic forms. Informally again, a canonical form Mc has the form
Xxi : Ai. ...\xn : An.Ma where Ma is atomic, that is, its head h is either a variable or a
constant, and it has generally the following form: h M{ ... M£, where the Mf s are canonical.
To guarantee 77-long forms, Ma is required to be of atomic type. As auxiliary judgments, we
also need to formalize canonical types, which enforce that all objects occurring as arguments to
type families in A-labels are also canonical.

Judgments

Canonical objects: Y h M ff A
Atomic objects: T \- M I A

Canonical types: T h A fr type
Atomic types: T h A I K

Rules The following rules define canonical objects, atomic object, canonical types and atomic
types.

T\- Axit type r,i:iihMti2 . r h A ± type T h M | A
 canpi canatm

YV\x:Ai.M^Ylx:Ai.A2 T^M^A

r h M fr Ai AX=A2 fhi2: type

YVM\A2

cancnv

S(c) = A T{x) = A
 atmcon atmvar
Fh-ciA ThxiA

ThMiiUx:A2.Ai rhM2fi2 T h MI Ai Ax= A2 T h A2 : type
 atmapp atmcnv

T\- MiM2lAi[M2/x] F\-MIA2

T\- Aii\ type r, x : Ai h A2 fr type r I- A 4. type
 cntpi cntatm

r I- Ux : Ai. A2 fr type T h A fr type

S(a) = ÜT
 attcon

Th AiUx-.A'.K ThMi[A' T \-A i K K = K' ThX kind
 attapp attcnv

r h A M I üT[M/a;] T h vl 4. X

2.4.4 Meta-Theory

The adequacy results from Section 2.3 depend crucially on one property of LF: Every LF object
has a canonical form. Otherwise one could not carry out an argument by structural induction
over the form of LF objects, which is necessary to establish that there is a one-to-one correspon-
dence between derivations and objects in the type theory. In Chapter 4 we will make a very
similar observation and in fact the entire formalism we present in Chapter 5 is based on this

31

32 2.5. MORE EXAMPLES

property: Every object defined in the logical framework lias a unique canonical form, i.e. it is
ß-normal and ?y-long. The interested reader may study the proof in [HP99].

Theorem 2.6 (Canonical form theorem)

1. If TV- M i\ A then TV- M : A.

2. For each object M such that Y h M : A, there exists a unique object M' such that M = M'
and T h M' ff A. Moreover, M' can be effectively computed.

3. For each object A stich that T h A : type, there exists a unique object A' such that A = A'
and r h A 1J type. Moreover, A' can be effectively computed.

Proof: see [HP99]. □

A direct corollary of the canonical form theorem is that each object has a unique type.

Corollary 2.7 (Uniqueness of typing)
If T h M : Ax

and r h M : A2

then there exists a unique type A s.t. A = A\ = A-i
and r h A ff type
and TV- M : A

Proof: see [HHP93]. □

That each object has a canonical form and a unique canonical type provides the theoretical
foundation of the theory and the logic development in the subsequent chapters in this thesis. The
necessity to have canonical forms is absolutely essential, and it cannot be emphasized enough:
one can only extend this work to logical frameworks, which possess these properties.

2.5 More Examples

The simply-typed A-calculus in Section 2.2 is defined by its terms and its reduction relation. In
particular, in Section 2.3 we have already discussed an adequate representation of well-typed
terms. In order to show some more examples of how to represent a deductive systems, specified
by its judgments and its inference rules, we address now the representation of the reduction

relation. The judgment e\ —> e2 is represented by a type family —> which we use as an
infix operator.

re, _L> e2-i = rein _L* r^i

Note, that here again we are overloading notation in order to simplify the presentation. We
use the same arrow for the informal and formal representation of the reduction relation; the
reduction arrow must not be confused with the function arrow of LF.

Because of the elegant representation of variables of the simply-typed A-calculus using higher-
order abstract syntax, we can easily represent the rbeta-rule:

32

CHAPTER 2. LOGICAL FRAMEWORKS 33

rbeta
(Ax : r.ei) e2 —> ei[e2/x] = rbeta (Xx : term rrn. re\~[) re<p

: app (lam (Ax : term rrn. rein)) re2~l —>■ (Ax : term rrn. rein)) re2
n

where rxn = x

Note that on the right hand side of the equation we need not represent r as argument to "rbeta";
it is implicitly represented through the type of re\1 as is the type of re2

n. The representation
of the Ham-rule is very similar.

V

e'
rlam

e -U e'

Ax : r.e —> Xx : r.e'

= rlam (Ax : term rrn. ren) (Ax : term rrn. ren) (Ax : term rr"1. rVn)

: lam (Ax : term rr~l. ren) —> lam (Ax : term rTn. re'n)
where rxn = x

Differently from the informal representation, we make the fact that x might occur free in V
unambiguously explicit. The representation of V is parametric in x! The third argument to
"rlam" has therefore the following type: Ilx : term rr~l. ren —> ren where rx~[= x.

r -\

V
1 v , ei —> e\
 rappx

ei e2 —>■ e[e2 = rapp: (Ax : term rTn. rein) (Ax : term rrn. rei; n) re2n rV

: app (Ax : term rrn. rein) re2~1 —> app (Ax : term rTn. re'1
n) re2

n

where rx~1 = x

Very similar to the encoding of rapp! is the rule rapp2:

r -i

V
1, , e2 —> e2

rapp2

ei e2 —>■ ei e2 = rapp2 (Ax : term rTn. rei~l) re2
n re2

n rX>n

: app (Ax : term rrn. rein) re2
n —>■ app (Ax : term rr~l. re\~[) re'2~

[

where rxn = x

The encoding of the single step reduction relation for the simply-typed A-calculus is adequate,
as one can easily verify by induction.

33

34 2.6. FUNCTION SPACES

Lemma 2.8 (Adequacy of the representation of —>) 1. If V :: e\ —> e2 which,

may rely on assumptions of the form, x\ :: term, TX, ... ,xn :: term, rn then rV~1 : rein —>
r'e-P which possibly contains variables of the form, x\ : term, rT\n,..., xn : term rTn~l.

2. If D rein —> re2
n is canonical, possibly containing variables of the form. x\ :

term rrin,... ,xn : term rrn'
1, then D = rVn where V :: e\ —> e<2 which, may rely

on assumptions of the form x\ :: term, T\. ..., xn :: term, T„

For all other encodings in remainder of this thesis we will not, write out the adequacy theorems
explicitly any more. They always follow the same scheme. Omitting inferable arguments, we

obtain as extension of the LF-signature from Section 2.3 the adequate encoding of the —> -
relation.

l

rbeta

rlam

rappi

rapp2

term T —> term T —> type

E\ E'2 (app (lam E\) E2) —>

(Ux -.teimTi.Ex -U E' x
-»• (lam E) -^ (lam E')

E,
1

E\

-> (app Ex E2)

E2 -L> El2

-> (app Ex E2)

(app E[E2)

(app Ex E!2)

By applying the same representation techniques discussed in this section, we further extend
■* and the conversion relation <—> . the signature by an encoding of the multi-step relation —

—-> : term T ->• term T

rid : E

rstep : E

type

1
E

E'

i—>

rrefl
rred

rsymm

rtrans

-^E' -
-^E -

term T

■ E"

E"

term T type

E <—> E
E -^ E'
-> E <—> E'
E ^^ E'
-> E' <—> E
E <—> E'
-> E' ^^ E"
-+E f—>• E"

2.6 Function Spaces

The function spaces, definable in the logical framework LF are different from function spaces
application programmers are used to. In general, programming relies on features such as function

34

CHAPTER 2. LOGICAL FRAMEWORKS 35

definition by cases or if then else constructions to code specific applications. Those features are
not supported by the logical framework. In fact, the operational meaning of LF includes only
two operations: /3-reduction and ^-reduction. Hence, LF is not expressive enough to represent
functions that decide if a given term is a /3-redex.

Boolean values: B ::= T | _L

Informally, the decision procedure can be defined by pattern-matching

XE : term T. case E
of (app (lam E\) Ei) >-> T

| (app (app £1 £2)) ^ 1
I (lam E') H-» ±

and clearly, this function is cannot further normalized since its argument E is only given at
run-time. Therefore, this function does not possess a canonical form in LF, and thus functions
of this kind violate the adequacy requirement of the encoding.

Therefore we must distinguish the two function spaces from each other. One function space
is the LF function space A\ -> A2, which contains all LF objects that map objects of type A\
to objects of type A2. Because of the canonical form theorem, functional LF objects of this
type are inductively defined, and therefore, we call it parametric. In Section 2.3, for example,
we have examined all functions of the type "term T\ ->■ term T2". The body of each function is
either a constant from the signature E, or a local parameter, applied to arguments.

We call the other function space recursive, because it permits function definition by cases and
recursion. The question of how to arrange it so that the parametric and the recursive function
space can safely coexist is one of the main contributions of this thesis. In essence, the nature of
the problem is that there are too many recursive functions destroying our requirement for the
existence of canonical forms. It has been shown that in the setting of a non-dependently typed
framework (the simply-typed A-calculus) one can express the recursive function space in terms
of the parametric using a modality, which satisfies the properties of the modal logic S4. We refer
the interested reader to [DPS97, Lel98].

2.7 Summary

A logical framework is a formal system which represents deductive systems using type theory.
Elegant representations of deductive systems that include variable concepts and appropriate
substitution principles are facilitated by higher-order representation techniques. In order to
guarantee the adequacy of encoding, each object in the logical framework must possess a canon-
ical form. The logical framework LF [HHP93], which is the logical framework of choice for this
thesis, supports higher-order representation techniques and has proven to be appropriate for
the representation of many deductive systems from logics, programming languages, operational
semantics, and many others [Pfe99].

35

36 2.7. SUMMARY

36

Chapter 3

Reasoning

3.1 Introduction

The quality of any design can be drastically improved by specifying and verifying associated
characteristic properties during the design process. For example, we expect that a typed pro-
gramming language satisfies the type preservation property, i.e. that the evaluation of any well-
typed program preserves types. Similarly, a calculus of inference rules for any logic must be
consistent; if falsehood is derivable, typically any other formula is also derivable, a circumstance
that invalidates consistency. Following [Gen35'j, the consistency of the sequent calculus for first-
order intuitionistic logic for example, follows from a purely syntactical argument. Gentzen has
shown that any derivation with cuts can be transformed into a derivation without cuts while
providing evidence for exactly the same judgment. By inspection of the other inference rules,
the consistency of first-order intuitionistic logic follows easily.

Therefore, good designs of deductive systems requires designers to reason about their prop-
erties. In particular, the overall goal of this thesis is to provide the necessary technology and
tools to support and automate these reasoning tasks. More specific in this chapter we extend
the example presented in Section 2.2 and develop as case study the proof of the Church-Rosser
property in Section 3.2. Then we review previously proposed techniques to formalize meta-
theoretic arguments about deductive systems, and discuss briefly how far these techniques can
be automated in Section 3.3.

3.2 Church-Rosser Theorem

The Church-Rosser theorem for the simply-typed A-calculus states that two convertible terms
ei, e2 have a common reduct e' and two reductions from e\ to e' and from ei to e'. This is
property is easily visualized by the following diagram.

ei *-e<i

V'
In this presentation we use solid arrows to represent given reductions, and dotted arrows

for reductions whose existence is still to be shown. The goal of this section is to develop the
Church-Rosser theorem for the notion of reduction defined in Section 2.2. The way we proceed

37

38 3.2. CHURCH-ROSSER THEOREM

is to introduce a new notion of reduction which we call parallel reduction as opposed to the
other notion of reduction which we call ordinary reduction in order to keep them apart. The
technique of using parallel reduction and parallel conversion for the proof of the Church-Rosser
property goes back to Martin-Löf and Tait (see [Bar80]). We proceed as follows: First, we take
the ordinary reduction relation defined in Section 2.2 and prove some simple properties. Then,
we introduce the notion of parallel reduction, show the Church-Rosser property and eventually
finish with an equivalence proof between parallel and ordinary reduction. But the reader should
be alert: The main goal of this section is not the theory itself, but rather the development of
an example with which we can explain and test the automated reasoning engine we develop in
this thesis. The argument itself is well-known, and we refer the interested reader to a further
and more detailed explanation in [Pfc93].

3.2.1 Properties of Ordinary Reduction

We begin now with two easy proofs about ordinary reductions: First we show that the multi-step
reduction is transitive, and second that all inference rules for the single-step reduction relation

are still valid, even if we exchange the single-step reduction arrow —> by the multi-step
reduction arrow —> .

More precisely, the first lemma expresses that two multi-step reduction with a common term
e" at the end of the first and the beginning of the second can be merged. This is a very basic
and easy meta-theorem. For example, it follows by induction over the reduction ending in e".
By careful analysis of the inference rules, we notice that the last applied inference ride is either
the identity reduction rid or the step case rstep. In the latter case, one appeal of the induction
hypothesis provides the right reduction derivation from which the necessary reduction can be
constructed.

Lemma 3.1 (Transitivity of -^) //Pi :: e -^ e' and V2 :: e' -^ e" then e -^ e".

Proof: by induction over T>\:

Case: V] = rid

Vo by assumption

V\ v'l

Case: V\ rstep

V :: e'"
Q::e -

e by i.h. on V" and T>2
by rstep on V\, V

D

38

CHAPTER 3. REASONING 39

The proof of Lemma 3.1 visualizes the three most basic operations used when reasoning about
deductive systems. The first technique is induction. It means, that the different proof cases
may take advantage of the fact that the induction hypothesis holds for any smaller derivations
according to some well-founded ordering. In particular, since the argument is by structural
induction, the induction hypothesis holds for all subderivations of the given derivation, and
hence the well-founded ordering is simply the subderivation ordering. The second technique
is case analysis: Derivations can be distinguished by the last applied rule. The third and last
technique is the use of other inference rules to reconstruct the desired result derivations (last
step, in the rstep case).

The second lemma, generalizes the rules from Section 2.2.1. It states, that the multi-step
reduction can be manipulated with the same rules that define the single step reduction when

1 *
one exchanges the —> symbol by the —> symbol. The rules are admissible, because they
require a reorganization of the premiss derivations in order to arrive at the conclusion.

Lemma 3.2 (Admissible rules)

1. IfV::e —>■ e' then Xx : r2. e —> Xx : r2. e'

2. If V :: e\ —> e[then e\ e2 —> e[e2

3. IfV :: e2 —> e2 then e\ e2 —> e\ e'2

Proof: by structural induction over V

1. Case: V = rid *
e —> e

Xx : r2. e -^ Xx : r2. e by rid

V T>"
1 . // // * / e —> e e —)■ e

Case: V = rstep
e —> e

Vi :: Xx : T2. e" -^ Xx : r2. e' by i.h.(l) on V"

V2 ■■■■ Xx : r2. e —> Xx : T2. e" by rlam on V
Q:\Xx: r2. e -^ Xx : T2. e' by rstep on V2, V\

2. Case: V = rid
ei —> ei

ei e2 —> ei e2 by rid

V V"

e1 —> e'{ e'{ —> e[
Case: V = rstep

ei

39

40 3.2. CHURCH-ROSSER THEOREM

V\ :: ei' e2 -A e\ e2

T>2 ■'■ e\ e2

i v
e'/ e2

Q ■■ e\ e-2
l

e'i e2

3. Case: V = — rid
e2 e2

ei e2 -%■ c-\ e2

P' V"

e2

l
y e2'

II * , /
e2 -H> e2

Oase: i/ — *
e2 —> e2

Vi :: e, e2'
*

ei e2 •

P2 :: ei e2
i

ei4
Q :: ei e2

l
ei e'2

rstep

by i.h.(2) on V"

by rappj on V

by rstep on V\, V2

by rid

by i.h.(3) 011 V"

by rapp2 on V

by rstep on Pi, V2

D

We observe, that, we have used the same principles for the proof of Lemma 3.2 as we did to
prove Lemma 3.1. In some sense, the third operation is slightly more general than before. In
the proof of Lemma 3.1 only one rule of the inference system is used to construct the existential
derivation, whereas here several are used. In summary, we have discovered three recurring proof
principles:

1. Appeals to the induction hypothesis to smaller derivations according to some well-founded
ordering on derivations

2. Case analysis over the last applied rule of a derivation.

3. Construction of desired derivations from other rules, assumed derivations, and result
derivations of appeals to the induction hypothesis.

These three proof principles correspond directly to operations which are implemented in the
automated theorem prover described in Chapter 8.

3.2.2 Parallel Reduction

In order to prove the Church-Rosser theorem for ordinary reduction from Section 2.2 we follow
an idea of Martin-Löf and Tait (see [Bar80]) and use the method of parallel reduction. This
method is based the following fundamental idea: Instead of reducing one /?-redex after the other
in sequence as with ordinary reduction, parallel reduction is defined in a way that several ß-
redices may be reduced simultaneously. The reduction relation is defined by the following three

40

CHAPTER 3. REASONING 41

rules.
u

X X

Ju i -Li _L / e\ => e\ e2 ==> e2 e =$> e
pbeta" plam1

(Xx : T.e\) e2 => e'i[e2/x] Xx : r.e =£• Ax : r.e'

/ ei =>■ ex e2 =>■ e2
 papp

ei e2 =>■ ej e2

The rules pbeta and plam are hypothetical because they discharge the assumption labeled
u. This is one of the crucial differences between this kind of reduction and ordinary reduction:
With ordinary reductions, variables were never reduced whereas here they are. In fact they
reduce to themselves. Reasoning with assumptions has consequences makes the formulation of
lemmas and theorems more difficult; UT> is a parallel reduction from e to e'" is a rather imprecise
statement because nothing is said about the context in which this statement is supposed to be
true. Since automated proof construction is the goal of this thesis, we have to be painstakingly
precise. We say that UT> is a closed parallel reduction from e to e'" if this statement does not
rely on any other additional assumptions. On the other hand, we say that "P is a open parallel
reduction from e to e'", if the context is not necessarily empty. In this situation, e,e' may

contain variables x\, ...,xn each of which reduces to itself: xi ==> X{.
Following the example of ordinary reductions, we generalize the single-step parallel reduction

relation (that may execute several /3-reduction steps simultaneously) to a multi-step parallel

reduction relation and for which we write e => e' if e parallel reduces in several steps to e'.

 pid pstep
e =>■ e e =4> e

Next, we define the notion of parallel conversion between two terms e and e' . Intuitively,
parallel conversion generalizes the multi-step parallel reduction relation in the same way as
ordinary conversion generalizes the ordinary reduction relation (see Section 2.2). We write
e <=> e', if there exists a sequence of intermediate terms ei,..., en, s.t.

e = ei => e2 <S= e3 =4> ■ • • =>■ en_2 «= en-\ => en = e'

keeping in mind that <= is not a new reduction relation but simply an alternative visual
presentation of ==> .

e => e , e => e _ e «=> e e <=> e
pred pexp ptrans

e e <=> e e <^=^ e

Applying the techniques presented in the previous chapter, we can now give an LF signature
in Figure 3.1, which is an adequate encoding the three parallel reduction rules introduced in
this section.

Lemma 3.3 (Adequacy of the presentation of parallel reduction)

41

42 3.2. CHURCH-ROSSER THEOREM

papp

pid

pstep

pred

pexp

ptrans

term T -> term T ->• type.

pbeta : {Tlx : term T. x

e2
l

-> (app (lam e\) e2)

ei => ex

e\ x

e, e.

e, x

1 c2

e2
l

e:.

->■ (app ej e2) ==> (app e'j e'2)

plain : (Ux : term T. x
l

.T e x e> x)
l

—> lam e =^=> lam c!

term T -)• term T ->• type

e =4> e

e

term T —>■ term T —> type

e => e
-> e
e
—> e
-> e

e

Figure 3.1: LF encoding of parallel reduction and parallel conversion (extends Figure 2.2)

l
1. If T> :: e\ =4- e2 which may rely on assumptions of the form, x\ :: term T\,U\ :: x.\ =4>

x,i,...,xn :: term, Tn,u„ :: xn => :c„ £/ien r-Dn : re]~1 =4> re2
n which possibly contains

variables of the form, x,\ : term, rT\~*,ui : x,\ => x\,... ,x„ : term, rT„n,u„ : xn =^ xn.

l 2. If D : rei
n re2_1 is canonical, possibly containing va.ria.bles of the. form, x\ :

term rTl
n,n,l : x\ => xi,...,xn : £e7-m rTn~[.u„ : x„ => a;„, then D = rT>~* where

V :: e\ —> e2 which m,ay rely on assumptions of the form, x.\ :: term T\,U[:: X\ =>

x'l,..., xn :: term Tn, un :: x7l —V xn

3.2.3 Properties of Parallel Reduction

In this section we show the Church-Rosser theorem for parallel reduction. The theorems and
proofs in this section are particularly important especially for the subsequent chapters, because
they reveal the issues associated with reasoning about open derivations, that is, derivations

42

CHAPTER 3. REASONING 43

which my be valid in terms of additional assumption. Recall, that we call a derivation closed, if
no additional assumptions are used.

Used in the proof of one of the subsequent lemmas is the property, that the parallel reduction
relation is reflexive. What we want to show is that for every term e, there exists a reduction
Q :: e =^> e. In a first proof attempt one may assume that e is closed.

Lemma 3.4 (Reflexivity of =*> , Version I) For any closed term e, e =>■ e.

This lemma is not directly provable in its current formulation by structural induction. To see
why consider the case that e's outermost constructor is an abstraction and not an application,
e has hence the form

term T\

e'
term T2

lam3

term (T\ —> T^)

And indeed, the induction hypothesis is not general enough to conclude that e' ==» e'.
Obviously e' must be closed for the induction hypothesis to apply, but it is not. Therefore we
must generalize the induction hypothesis in such a way, that it also applies to open terms e. In
the second attempt we try the obvious: e can also depend on variables x\ :: term Ti,...,xn ::
term Tn:

A

Lemma 3.4 (Reflexivity of =>• , Version II) For any term e, which is open in the sense
that it may depend on assumptions x\ :: term TI, ... ,xn :: term rn, there exists a derivation of

l
e =>• e.

Strangely enough, this formulation of the lemma is still not general enough! To see why,

consider e = xf. The lemma should yield that X{ => Xi, but how? There is no rule from the

signature we could apply and there are no assumptions x\ => JCj. The solution to the problem is
to treat the reduction rules Xi =>■ Xj in the same way as we treat assumptions. We must set the
stage in such a way, that in addition to the parameter assumptions x\ :: term TI, ..., xn :: term rn

also the following assumptions

 U\ un

Xl =^> X\

are available which we as usual abbreviate as list by u\ :: x\ =>• X\,... ,un :: xn =$> xn. For
a better conceptual understanding we pair the declaration of Xi and the correspond assumption
Ui. Not too surprisingly any more, the reflexivity lemma is now provable in this generality.

.4

Lemma 3.4 (Reflexivity of =$■ , Version III) Consider the situation where a list of the
following assumptions is present

Xi :: term T\,u\ :: x\ =» X\,..., xn :: term rn, un :: xn =>■ xn

Then for any well-typed term e, there exists a derivation of e => e.

43

44 3.2. CHURCH-ROSSER THEOREM

Proof: by structural induction on e:

Case: e = x,j
term r,

l
Ui :: Xi => X; by assumption

Case: e

x7,+i
term T\

e'
term r2

lam:r"+1

term (T\ -> T2)

Assume ,T7,+I :: term TI

Assume w„+, :: a;n+i => z„+i

P :: e' =U e'
Q :: A.7;7,_|_i : term rj.e' => Ax„+i : term Tj.e'

by i.h. on e'

by rule plam on V

ei ei
term (r2 —> T\) term r2 —

term T\

V, :: ej =J> ej

V-2 :: e2 ==> e2

Q: : app e.\ e2 ==> app e\ e2

app

by i.h. on e.\

by i.h. on e2

by rule papp on V\,V-2

D

Note, that the proof works only in the situation where we have exactly the assumptions
xi,ui,...,xn,un if we ignore unrelated assumptions for now. If there are more, the proof is not
a proof: some cases may not be covered. If there are less, the induction hypothesis might not
be applicable. Without making it really precise, we want the reader to notice that the list of
assumptions is very regular in structure. It is made out of basic building blocks of the form:

p ::= x :: term r, u :: x =^> x where r is some type

and the assumption lists can be inductively described by

(3.1)

$ *,/»

where variables x, u are a-converted to avoid duplicates. If we refer to the LF signature as a
static description of the world that summarizes all inference rules, $ is a dynamic extension
of the world because it introduces new parameters. In addition, the proof of Lemma 3.4 also

44

CHAPTER 3. REASONING 45

motivates a new meta-proving operation; in the case of lam we extend the current world by two
new parameters xn+\ and un+\. All other proof principles used in this proof have already been
discussed.

When reasoning informally about deductive systems, these assumptions stay in general hid-
den. Their regularity is tremendously important in this work, and it is thoroughly analyzed and
formalized in Chapter 4. Lemma 3.4 is an explicit version of Lemma 3 in [Pfe93].

Following the sequence of lemmas presented in [Pfe93], we generalize each lemma to the
appropriate level of detail in order to motivate the design of our system in Chapter 4. The
transitivity lemma for parallel reductions for example is provable in a setting where V :: e ==> e'
are closed, which raises the question if this is general enough? In other words, the degree of
generality of a lemma does not only depend on its proof, but it also depends on the generality
of the lemma for where it is used. A transitivity property for closed derivations cannot be
applied to derivations which are open. On the one hand, this sounds trivial, but on the other,
there is a whole theory of which proof can appeal to what lemma, which we discuss in detail in
Section 5.7.2. Nevertheless, we prove this lemma in more generality. For all the proofs following
below, we let $ describe dynamic extensions to the world, as defined above.

$ = x\ :: term T\,U\ :: x\ => x\,... ,xn :: term Tn,un :: xn => xn

Lemma 3.5 (Transitivity of =^>) Let $ be the dynamic extension of the world. If V\ ::
e => e' and T>2 :: e' ==>■ e" are closed then e =£- e".

Proof: by structural induction over Vy.

Case: Vx = u
x =^> x

T>2 " x =^ e" by assumption

Case: Vx = Pid
*

e => e

T>2 :: e =^ e" by assumption

l o'" J" ■ „' e =$• e e ==> e
Case: Vx = pstep

e'

V :: e"' =» e" by i.h. on V'{,V2

Q::e=^>e" by pstep on V\,V

D

45

46 3.2. CHURCH-ROSSER THEOREM

The following sequence of lemmas leads to the main result of this section: the parallel
reduction relation possesses the Church-Rosser property. We present the lemmas in the same
sequence as in [Pfe93], but enrich the formulation by information if the derivations are closed,
or if they are open.

Lemma 3.6 (Substitution lemma) Let $ be the dynamic extension of the world. If

V

ei
l

and S :: e2 => e'2 then exists a reduction ei[e2/y] =>■ ej[e2/y].

Proof: by structural induction on V.

Case: V = (where x :: term r, u :: x => x € <& and x ^ y)

£:: by assumption

Case: V =
y =

£ :: e2 =, by assumption

u
l x => x

e-i
l

e-i

Case: V =

V2

e4

{Xx : r.e3) e4 => e3[e4/:z;]
pbeta"

x to $' Extend $ by x :: term T,U :: x -

V\ :: e3[e2/y] =>• e?,[e2/y]

P2 :: e4[e2/y] => e^[e2/y]

Q::(Aa::T.e3[e2/y])e4[e2/y] =^ e^/yMef,/?,]/*

Q :: ((Ax : r.e3) e4)[e2/y] =U {^[e'Jx))[e'2/y\

by i.h. on T>\ in <!>'

by i.h. on V2 in $

by rule pbeta" on V\, V'i

by Definition substitution

l x =4> 2:

e ^ e'
Case: D =

Xx : T.e =>■ A.T : T.e
plam"

46

CHAPTER 3. REASONING 47

Extend $ by x :: term T,U :: x => a; to $'

Pi » e[e2/y] =^> e'[e'2/y]

Q :: Xx : T.e[e2/y] => Ax : r.e'fe^/y]

Q::(Aa;:r.e)[e2/y] =4 (Xx : r.e')[e'2/y]

by i.h. on £>i in $'

by rule plam" on V\

by Definition substitution

e3
Case: 2? =

l
e4

X>2
1.

e3 e4 e3 e4

papp

e4[e2/y]

V\ ■■ ezfa/y] ■-
Vi :: e4[e2/y] =

Q::(e3[e2/y])(e4[e2/y]) =^ (e'3[e'2/y}) (e'4[e'2/y})

Q::(e3e4)[e2/y] ^ (e'3 e'4)[e'2/y]

l

by i.h. on V\ in <£

by i.h. on V2 in $

by rule papp on V\,V2

by definition substitution

D

By careful inspection we can determine that the only four proof principles used in this proof are
case analysis, appeals to the induction hypothesis, construction of witness objects from rules
and assumptions, and dynamic extensions of the world. We continue this presentation with the
proof of the diamond lemma for parallel reduction which shows clearly how difficult it is to argue
that all cases are covered.

Lemma 3.7 (Diamond lemma) Let $ be the dynamic extension of the world. If V1 :: e =$■
e and Vr :: e => er then there exists a common reduct e', such that 7Zl :: el =4> e' and
TZr :: er =U e'.

Proof: by simultaneous structural induction over V1 and Vr.

Case: V1 = Vr = u (where x :: term T, U :: x =>■ x € $)

e = x
nl = nr = u

by assumption
by assumption

47

48 3.2. CHURCH-ROSSER THEOREM

V

e\ -L, J

Case: T>1 =
e2 => e2

(A.T : r.e!) e2 => e[[e'2/x]
pbeta" pr —

.T

ei

2>[2?2'

e-2

(Xx:r.ei)e2 =U e\fö/x]
pbeta"

Extend <I> by x : term T, w, :: :r
There exists an e\

V, :: e\ =U e\
V2 :: e\ =U e\
There exists an e'>

Qx :: ei

Q2 " er
2

I, _L
r-2

x to $'

by i.h. on £>(,£>[in <I>'

by i.h. on V'2,V!2 in $

£>

Pi

ei

4

V\

'v2

Vl

4
Qi

ß'2

U

e'^/x]
by Lemma 3.6 on Vi, Q\

by Lemma 3.6 on V2, Q2

(Xx : r.ei) e2

v1/ \vr

e[[el
2/x

e\[e'2/x]

48

CHAPTER 3. REASONING 49

Case:

u

V

ei

V1 =

V1 u2

&2

(Xx : T.ei) e2 =» e[[el
2/x]

pbeta"
Xx : T.e\

Vr =

u2

e2

(Xx : T.e\) e2 => e\ e

papp

- u

V'{

ei el
PJ

As : r.ei ==> Xx : T.ef
ej = Xx : T.e'{

Extend $ by x : term T,U :: x
There exists a e'x

Jr 1 - J

plam"

V2 :: e?
There exists a e2

Ql :: ef, =4 e'2

Q2 :: e^ =U e'2

x to <£>'

by inversion on V\

l TiiT ;„ ^f.' by i.h. ouV[,V'{ in $

by i.h. ov.Vl
2,V

r
2 in $

2?

TV

ei

*i

.Pir

e
l

^2

^l
4

Q

e2

4

.^

e2

'02

^i ::ei[e^/x] => e'Jel./s]

ft2 :: (As : r.ef) e\ e[[e2/x]

by Lemma 3.6 on V\, Qi

by rule pbeta on V2 and Q2

(Xx : r.ei) e2

2j/ \Dr

e[[el
2/x] (Xx-.T.e'l)er

2

e'i[e'2/x]

49

50 3.2. CHURCH-ROSSER THEOREM

Case:

x => x
V[

e => e

X' => X

2?' =
Xx : r.e => Xx : r.e

plam" if _ plam1'
Ax- : r.e => A:/: : T.cr

Extend $ by x : term T,U :: x => x to $'
There exists a e'

Pi :: el =U e'

P2 :: cr =U e' by i.h. on V\, V\ in $'

x> -^

TV ^2

fti :: Arc : T.e; =^4> Ax : r.e'

7?.9 :: A.7; : r.er => Ax : r.e'

by plam" on Pi

by plam" on P-i

Xx : r.e

Xx : T.C Xx : r.e'

Ax : r.e'

Case:

£>' =
Ax : T.e\ => ej e-2 =£

(Ax :T.ei) e2 =U- e^ 4

l

l
e"2 ei => e
 papp pr _

2?^

e2 <-2

(Ax : r.ei) e2 ==> e\[e?2/x]
pbeta"

u
X => X

p'

ei -U Ji

V[=
Ax : r.ei => Ax : r.e1

plam"

50

CHAPTER 3. REASONING 51

e[= Xx : T.e'l

Extend <£> by x : term T,U :: x
There exists a e[

Pi :: e'l =U e[

P2 :■■ e\ ±> e[
There exists a e2

Qi :: 4 =U e'

Q2 :: e\ =^ e

x to $'

by inversion on T>{

H TV :„ ^/ by i.h. on £>'/,£>[in $

by i.h. <mVl
2,V

T
2 in $

P'/

ei

7>-

ei

*i

DT

P

^

4
Qi

R2

.X>5

'Q2

Til :: (Ax : r.e'/) e2 =^ e'^/x]

■R2 ::e\\er
2lx\ =U e[[e'2/x]

by rule pbeta on Pi and Q\

by Lemma 3.6 on P2l Q2

{Xx : r.ei) e2

(Ax : T.e'l) el
2 e\[er

2/x]

e'i [4/a]

Case:

P

ei

P' =

^

e2

ei e2
el e2

papp jyr _
ei

P^ P2
r

fi
2

ei e2 el e2

papp

There exists a e'j

Pi :: ei =U e[

P2 ■•: e\ J* e[
There exists a e'0

öi :: e2

02 " el

by i.h. on P^,P[in $

by i.h. onDi,M in $

51

52 3.2. CHURCH-ROSSER THEOREM

/ j Tlx :: e[e'2 e[e2

e[e2

V

TV

ei

e'i

■P\

'V*

v>

4
Qi

e2

e-,

VI

c2

'Q2

by papp on Vi,Q]

by papp on V-2, Q-i

e\ e-2

V1/ \vr

p' e<
T T

ex e2

"R*

e, e 1 ^2

D

The proof of the diamond lemma introduces two new proof principles. First, we use inversion
in the third and the sixth case of the proof, and second we repeatedly appeal to the substitution
Lemma 3.6. Conceptually, inversion is a new operation, but technically, it is nothing else but
a special form of case analysis. Given a derivation of some judgment cases can be analyzed
according to the last applied rule, and if the last rule application is uniquely determined, case
analysis is called commonly called inversion; in practice however inversion need not to be unique.
One of these examples is the cut-elimination theorem for the sequent calculus of first-order
intuitionistic logic [Pfe95].

The second proof principle is lemma application; it is very important since it allows the
programming language and logic designers to stage their development into tasks of appropriate
size.

Continuing in the development of the Church-Rosser theorem for parallel reduction, we
present three more lemmas, which generalize the diamond Lemma 3.7 to parallel multi-step
reduction and parallel conversion. We give the proofs explicitly, in order to have an extended
set of examples necessary in the subsequent chapters of this thesis. Alternatively, the interested
user may want to consult [Pfe93] for a more detailed presentation.

Lemma 3.8 (Strip lemma) Let, $ be the dynamic extension of the world. If V1 :: e => el

and Vr :: e

TZ2 :: er =U

er then there exists a common reduct e' such that 7£i ?' and

52

CHAPTER 3. REASONING 53

Proof: by structural induction on Vr

Case: T>r = pid

Ki :: el =U el

n2 = Vr.:e =^
by pid

by assumption

fti

V[vi,

Case: VT = pstep

There exists a e[

Vi :: el =U e[

V2 :: e\ =?* e\
There exists a e2

V3 :: e\ =^ e2

K2 :: er =U e'2

by Lemma 3.7 on T>,V[in $

by i.h. on 7^2,^2 in $

Pi\ v2/ J%

e[

V^

er

'n2

Tli :: e .. J by rule pstep on Vi, Vz

D

A further generalization yields the confluence lemma: The left reduction step is being gen-
eralized to a multi-step reduction.

53

54 3.2. CHURCH-ROSSER THEOREM

Lemma 3.9 (Confluence lemma) Let $ be. the. dynamic extension of the world. If V1 ::
e ==> el and T>r :: e =>• er then there exists a common reduct e', such that 1Z\ :: e' ==> e'
and 7?-2 - er => e'.

Proof: by structural induction on X>'

Case: V1 = P'd

e'

Tli : e

i2

by assumption D7'

by rule pid

Ki "R.2

-U J
TL

Case: V' pstep

There exists a e\

V, :: e[=U e\
V2:: er 1

e\
Thci 'c exists a e^

-R.X :: :e'
* ^ 4

V3:: el
* v 4

by Lemma 3.8 on P'1,D'' in $

by i.h. on Vl
2,V\ in $

P.

2?

J>i

e

ttf
*i

'v3

e'2

54

CHAPTER 3. REASONING , 55

TZ2 :: er =^> e'2 by rule pstep on V2, Vs

D

All is prepared to prove the Church-Rosser theorem for parallel reduction.

Theorem 3.10 (Church-Rosser) Let$ be the dynamic extension of the world. IfV :: el

er then there exists a common reduct e', such that 1Z\ :: el => e' and TZ2 " er ===> e'.

e'- -er

e'

Proof: by structural induction on V

e< =^ er

Case: V = pred
el <=> er

1Z\ :: e ==> er by assumption V\
1Z2 " er =^> er by rule pid

J V r e «- e

7e\ /n2

er

r * v /

Case: V = pexp

T^i :: e' =^> e' by rule pid
TZ2 '■'■ er =^ e by assumption Z>i

P

el

Vx V2

e

e" «=> e'
Case: V = ptrans

„I . . jr

55

56 3.2. CHURCH-ROSSER THEOREM

There exists a e\

Vi :: e' =^ e[

P2::e =^> e\
There exists a e'2

V3 :: e =^ eJ,

P4 :: e => e^
There exists a e'

Q, :: e\ =U e'

Q 2 :: e:2

by i.h. on V\ in $

by i.h. on V2 hi $

by Lemma 3.9 on V'2,V:i in $

fti :: e'

TZ2 :: er

by Lemma 3.5 on Pj, Qi
by Lemma 3.5 on V2, Q2

D

This concludes the presentation of meta-theoretic results for parallel reduction. All proofs
so far have exposed five basic and recurring proof principles. In order to prove a theorem by
induction, different cases must be analyzed, and the formulation of the theorem can be used as
induction hypothesis, as long as the argument derivations are smaller than the given ones. In the
area of inductive theorem proving treated as one operation through the presence of induction
principles, it is treated in our presentation as two different operations.

New derivations must be constructed from already known to exist derivations by the ap-
plication of inference rules. This proof principle constructs witness derivations for existential
quantified variables using assumptions (also from $), and inference rules.

If the induction hypothesis of a theorem is so general that it can be applied to open terms
(which are open in a regular world extension <J>), new parameters can be dynamically introduced
into the proof process. And last but not least, very often lemmas are needed to complete a proof.
The possibility to appeal to lemmas is crucial in any interactive proof development system.

3.2.4 Equivalence of Parallel and Ordinary Reduction

The Church-Rosser property for parallel reduction is proven. But what about the Church-Rosser
property of the ordinary reduction relation? We proceed by showing that it is also satisfied for
ordinary reduction. The essential idea behind the proof is that any ordinary reduction can be
transformed into a parallel reduction and vice versa.

56

CHAPTER 3. REASONING 57

Lemma 3.11 (Single-step correspondence)

1. IfV::el =U er then el -^ er.

2. IfV::el -^ er thene1 =U er.

Proof: by structural reduction on P(l),2?(2). For the detailed proof, see [Pfe93], Lemma 10,
Lemma 11. D

This result can be generalized to an entire sequence of reduction steps. Each ordinary multi-
step reduction can be expressed by a parallel multi-step reduction and vice versa.

Lemma 3.12 (Multi-step correspondence) V :: el —U- er iffTZ::el =5=> er

Proof: by structural induction on T>, TZ, respectively. For the detailed proof, see [Pfe93],
Lemma 12. D

The conversion rules for ordinary reduction do not correspond directly to the conversion
rules for parallel reduction. For example, there is an explicit ordinary symmetry rule rsymm,
but there is no such rule in the parallel case. But we can show that it is admissible.

Lemma 3.13 (Symmetry) IfV :: el <==> er then H :: er 4=> el

Proof: by structural induction on V. For the detailed proof, see [Pfe93], Lemma 14. D

Using this result, one can now show the equivalence of ordinary and parallel conversion.

Lemma 3.14 (Conversion correspondence)

1. IfV::el <—► er thene1 <=► er

2. IfV:: el <=*■ er then el <—>■ er

Proof: by structural induction on V(1),V(2). For the detailed proof, see [Pfe93], Lemma 13
and Lemma 15. D

Now it is obvious; also the ordinary reduction relation enjoys the Church-Rosser property.
Given an ordinary conversion derivation between two terms el and er, Lemma 3.14 guarantees
that there is a corresponding parallel conversion. By the Church-Rosser property for parallel
reduction 3.10, one obtains a common reduct e', and two parallel reductions V[and Vr, which
can easily be translated back into ordinary reductions.using Lemma 3.14 twice.

Theorem 3.15 (Church-Rosser for ordinary reduction) If el <—> er then there exists a
common reduct e', s.t. el —> e' and er —^- e'.

Proof: Direct. For the detailed proof, see [Pfe93], Theorem 16. D

When studying the proofs in [Pfe93], the reader will notice that the only proof principles
used are the ones discussed in this chapter.

57

58 3.3. HISTORICAL OVERVIEW

3.3 Historical Overview

The formalization of formal theory of various kinds has been the focus of attention in the
automated theorem proving and proof assistant community for at least four decades. First there
were general-purpose theorem provers which were built to support mathematicians in their quest
for the search of mathematical truth. Then other special-purpose automated theorem proving
techniques have been invented, developed, and established; one of the most successful techniques
is model-checking [CGPOO] which has proven extremely successful not only in the academic
environment but also for industrial applications. In order to classify the work presented in this
thesis as a special purpose automated theorem proving system for the development of the meta-
theory of deductive systems, we attempt to give a brief overview over previous developments
and discuss the advantages and disadvantages of existing theorem proving techniques.

3.3.1 General-Purpose Theorem Provers

The work by Boyer and Moore [BM79] on the Nqthm theorem prover has triggered a whole
research program concerned with the automated deduction of true statements. Even though
mainly interested in reasoning about mathematical truth, this theorem prover has been applied
to many different problems domains over the last two decades. In general, formal methods and
automated deduction techniques have found numerous applications in hardware and in software
design. Based on quantifier-free inductive definitions, Nqthm reads a list of theorems and proofs
and tries to bridge the gaps in the proofs by automatically applying small reasoning steps. Only
if a gap is too big, the theorem prover complains and asks the developer to introduce new
lemmas. Many important theorems have been verified using Nqthm. among many others, the
Church-Rosser theorem [Sha88], and Gödel's incompleteness theorem [Sha94], and the Ramsey
theorem [Kun95].

When using a theorem prover like Nqthm for the development of the Church-Rosser theorem,
the user is required to encode terms, the typing relation, and all reduction relations in form
of quantifier-free inductive definitions. Variables for example must represented as strings or
numbers, substitutions must be encoded explicitly, and naturally the soundness of substitution
application must be proven explicitly. It is clearly possible to use Nqthm as a theorem prover
to tackle this task (as Shankar has demonstrated [Sha88]), but the restriction to quantifier-free
inductive definitions puts additional burden on the user's shoulders to implement the various
variable concepts, capture avoiding substitutions, and to prove the corresponding substitution
lemmas.

Over time, many techniques have been developed to perform efficient proof search in dif-
ferent logics, ranging from classical, over intuitionistic to linear logics with different degrees of
expressiveness, ranging from prepositional over first-order to higher-order logics. Techniques,
such as resolution [Rob65], paramodulation [BGLS92], or the inverse method [DMTV99] have
been devised to facilitate proof search in various calculi, such as natural deduction[Pra65], the
sequent calculus [Gen35], the tableaux formulation [Häh99], or the intercalation calculus which
is a specialized formulation of the natural deduction calculus [SB98] for proof search. These
techniques are tuned to conduct efficient proof search in deductive systems.

Our endeavor however lies in reasoning about deductive systems. Early on, it has been
noticed that the inductive formalization of natural numbers is directly reflected in proofs by
mathematical induction [Göd90]. In computer science, where many constructs are inductively

58

CHAPTER 3. REASONING 59

defined, induction has presented itself as a very valuable tool to express and reason about
specifications in a formal way. Thus, many theorem provers are based on induction and inductive
definitions in order to formalize deductive systems, such as programming languages and logics.
In fact, induction is one of the core concepts present in almost every proof assistant, such as
Isabelle [Pau94], Coq [DFH+93], Lego [LP92], and PVS [ORS92], and many theorem provers,
such as INKA [HS96], and Nqthm [BM79].

Unfortunately, inductive theorem provers are limited in their expressiveness. In fact, by
definition, inductive definitions are restricted by the positivity condition: The type to be de-
fined can only occur in positive positions in the constructor types. This means, however, that
our preferred encoding of the simply-typed A-calculus, which relies on a higher-order encoding,
cannot be expressed using standard inductive definitions. The argument to "lam", for example,
is a function of type "term rTi~l —> term rT2~"' which clearly violates the positivity condition.
Thus none of the presently available theorem provers supports our proposed way of encoding
the Church-Rosser theorem (see Section 3.2). In this thesis we present a technique that al-
lows inductive reasoning over deductive systems that are encoded using higher-order induction
techniques.

Contrary to the proof strategy presented by Nqthm, almost all modern theorem provers
have adopted a tactic based proof development style [Pau83]. The inference system of the
logic intrinsic to the theorem prover consists in general of a set of rules. Given the current
proof goal, it is the user's responsibility, to apply rules in the correct order. But in many
cases, repeated application of the same rule, or the application of rules in a particular order
becomes necessary, which has prompted the development of special purpose languages to express
algorithms executing any kind of rule application. These algorithms are called tactics and they
simplify the theorem proving effort tremendously. The application of a tactic can either succeed,
leaving the user with a new (possible empty) set of subgoals, or fail in which case the proof goal
remains unchanged.

The work that is presented in this thesis does not take advantage of recent advances in
tactic theorem prover. But we recognize that this work can profit from techniques such as proof
planning [BSvH+93] and lemma generalization [FH94].

3.3.2 Special-Purpose Theorem Provers

Besides general-purpose theorem provers which are designed to to tackle any problem expressible
in mathematics, there are theorem provers that are designed to serve a special purpose. In
hardware verification, for example, many circuits can be described by finite state automata.
Specifically, the technique of model checking allows to verify a piece of hardware (or better its
model) against a given specification by means of a complete state space traversal. In general,
the languages used to express those specifications are typically temporal logics. The interested
reader might consult [CGPOO] for a detailed discussion. If any of the states does not satisfy
the specification, the model checking algorithm fails and may report a counter example that
gives the hardware designer insight into the cause of failure. Model checking is tremendously
successful because it serves a special and relevant purpose and it guarantees a high degree of
automation.

Other special-purpose theorem proving techniques are based on rewriting [HO80] and geom-
etry. In rewriting important decision procedures have been developed in order to decide if two
terms are equal modulo a set of equalities. Clearly, this decision procedure is a special purpose

59

60 3.4. SUMMARY

theorem proving technique. Special purpose decision procedures have also been developed to
reason quickly about geometry, for example by using Gröbner bases [Kap98].

It is very difficult (even though possible) to represent and reason about a model-checking
problem in a general-purpose theorem prover. Almost certainly, since the overhead is enor-
mous, this technology would probably not been as widely accepted as model-checking is today.
Therefore we argue in favor of special purpose techniques to augment general purpose theorem
provers. In particular, general purpose theorem provers only offer a restricted set of operators
for specification and reasoning; therefore in order to use other operators, auxiliary constructions
are mandatory. For example, in order to use a general purpose theorem prover to express a fi-
nite state traversal problem, one has to encode the reachability relation between states explicitly
whereas it is implicit when using a model checker like SMV [CGP00].

In this sense, the meta-theorem prover which wc develop in the next few chapters is a special
purpose theorem prover. The technology presented in this thesis does not provide a new approach
to general purpose theorem proving, on the contrary, it delivers special purpose theorem proving
technology for the use of higher-order encodings. Proofs found by our meta-theorem prover can
be transformed into proofs of a general purpose theorem prover. In fact, in Section 9.1.4, we
discuss the possibility of translating our meta-proofs into proofs parsable and understandable
by other theorem provers, such as Lego or Isabelle.

3.4 Summary

In this chapter we have presented a detailed proof of the Church-Rosser theorem for the simply-
typed A-calculus, and have characterized five basic and over and over recurring proof principles:

1. Case analysis of the last applied inference rule of a given derivation. The proof obligation
is split into several new cases.

2. The construction of one or several witness derivations for one ore several existentially
quantified judgments. This operation closes a proof obligation.

3. During a proof an appeal to the induction hypothesis may be invoked.

4. The development of a theory consists of a sequence of lemmas, where each lemma must
be a derivable consequence from previous ones.

5. The proof may be hypothetical, that means that the derivations may be valid in a regular
extension of the current world. The world may be dynamically extended during the course
of a proof.

All proofs in this chapter are composed of a sequence of these basic operations, which should
leave the reader with the following impression: The proofs themselves are not particularly
difficult but they are tedious. The most difficult problem is to express the induction hypothesis
in appropriate generality — that is the formulation of the theorem itself. In addition, we note
that all theorems of this section can be expressed as Il2-formulas.

As opposed to traditional theorem proving techniques, which are concerned with reasoning
in a deductive system — a calculus for some logic — our goal is to reason about deductive
systems. In the further development of this thesis, we will use some techniques from the former,
but the overall emphasis of this thesis is the technology to accomplish the latter. In addition,

60

CHAPTER 3. REASONING 61

we strongly believe that in the formal development of programming languages and logics, the
contributions of this work are very important since they help to verify and automatically prove
many of the properties of deductive systems. Furthermore, we strongly believe, that such a
system should support the user with helpful hints of how to improve the formulation of a lemma
or a theorem in the case of failure.

The theorem prover and its theory, which is presented in the subsequent chapters, is a special
purpose theorem prover: it owes it success to the combination of elegant higher-order represen-
tation techniques, and proofs by cases and recursion. But in other respects, it is quite basic; it
only takes advantage of few of traditional theorem proving techniques, and its implementation
could largely profit from applying techniques, such as the inverse method [DMTV99], focus-
ing [And92, How98], or rippling[BSvH+93] — techniques that are well-known for traditional
systems.

61

62 3.4. SUMMARY

62

Part II

Design of a Meta-Logical Framework

63

Chapter 4

Meta-Logical Frameworks

4.1 Introduction

Logical frameworks are powerful (meta-) languages that support encodings of a large variety of
deductive systems, including deductive systems which may contain side conditions, such as for
example the Eigenvariable condition for first-order logic, or freshness conditions on parameters
in programming languages. Object languages which contain a variable concept, logics which
introduce hypotheses, and rewrite systems which dynamically extend the local rewrite relation
by cases for newly introduced parameters can be very elegantly represented in these frameworks.
For example in LF, the adequacy and soundness arguments of the encoding rely on the fact that
canonical form exists for any LF object including those of functional type and that the framework
provides dependent types (see Section 2.4.4).

Canonical forms are inductively defined by their very definition in LF. In particular, canonical
forms of functional type always start with a leading prefix of A-abstractions. We have argued in
Section 2.6 that even though the notion of operational semantics associated with LF functions
does not capture definition by cases, LF is an ideal candidate for adequately encoding deductive
systems. Clearly, it is not expressive enough to formalize function manipulating derivations that
need to be defined by recursion and case analysis. In this thesis, we use LF's function space
only for the purpose of representation; for the purpose of defining functions by case analysis and
recursion, we introduce in this chapter the notion of a recursive function space that is defined
in terms of LF objects and LF types.

There is a very deep connection between the recursive function space and standard induction
principles. First order encodings of natural numbers for example possess standard induction
principles used to reason about natural numbers. More specific, the induction principle expresses
how to derive property P for all natural numbers n.

h-P(n)

hP(0) hP(n + l)

h Vn.P{n)
natind1

Using this induction principle for example, we can argue that the result of adding any number to
itself is even, which is expressed by the predicate "even (n)". Assuming that "even (n)" implies

65

66 4.1. INTRODUCTION

"even (n + 2)", we can quickly prove that the formula "Vn.even (n + n)".

 u
h even (n + n)

ev_z ev_ss
heven (0 + 0) h even (n + n + 2))
 natind"

h Vn.even (n + n)

This proof contains some computational content that can be summarized by a recursive
function defined by cases. Appeals to the induction hypothesis correspond to recursive calls —
given that there is an appropriate formalization the two rules ev_z and ev_ss as "evz" and "evss",
respectively.

fun double 0 = evz
| double (??, + 1) =

let
val D = double n

in
(evss D)

end

It has been noticed, that the first-order case does not generalize well to the higher-order
case. As our example shows, the main reason that induction principle exists is that we can
predict the form of a natural number. It is either 0, or it is the successor of a some other natural
number. These are the two only cases to be considered, there are no other constructors for
natural numbers. The justification of the soundness of this induction principle relies on the
general assumption of the world: It is assumed to be closed. Only if it is, it can be argued that
the induction principle covers all cases. Correspondingly, it is easy to see that double covers
all cases. In addition it is terminating, which makes it a realizer for the proof given above.

If the definition of natural number were open-ended, this particular induction principle is
not sound. Thus, in order to make the closed world assumption explicit, we take the freedom
and augment the induction schema with a "•" representing that the world is closed.

 u
■ h P{n)

■ h P(0) • h P(n + 1)

• h Vn.P(n)
natind"

Are there standard induction principle for higher-order encodings? Not according to the
standard literature. It is the goal of this chapter to motivate the design of a meta-logic that
accommodates reasoning by cases in the presence of higher-order encodings. The fundamental
problem is that induction over higher-order encodings violates the closed world assumption, since
in order to appeal to the induction hypothesis, one has to traverse A-binders, thereby extending
the world. Clearly the open, world assumption is too general: it is impossible to guarantee that
an induction principle, or the related recursive function covers all cases because the world is
always subject to change.

66

CHAPTER 4. META-LOGICAL FRAMEWORKS 67

The solution suggested by Equation (3.2.3) is what we call the regular world assumption
which characterizes the form of all possible worlds <E> (in a finitary way). Thus, one idea is to
design an induction principle to reason about property P for all simply-typed A-terms in a world
with the regular extension:

$::= • | $, (x : term T,U : P(x))

Tentatively, one would expect an induction principle of the following form:

U\ u2 u3
$r-i>(ei) $HP(e2) $,x : term TUU : P(x) h P(e x)

$ h P(app ei e2) $ h P(lam (Ax : term n. e a;))

$ h Ve : term r.P(e)
termind Ul,U2,U3

An induction principle of this form would be sufficient for our purposes. But on the other
hand, we push its definition another step further. In this form, the appeals to the induction
hypothesis are limited, since the worlds are fixed in the assumptions u\, 112 and u3. For our
experiments however, $ describes a valid and regularly formed LF-context, and it must hence
satisfy various requirements such as weakening, contraction, and exchange. Therefore we dis-
tance us ourselves from the standard notation for induction principles, but we develop instead a
meta-logic based on a realizability interpretation of its proofs as total recursive functions. These
functions range over arbitrary LF objects that are valid in some world $, which is regular in
structure. Thus, the soundness of our technique relies crucially on termination and coverage
properties of the recursive functions.

By basing inductive definitions on the regular world assumption, this thesis generalizes pre-
vious work on standard induction principles which requires the defined datatype not to occur
in any negative position in any constructor type (see for example the inductive calculus of
constructions [PM93]).

In this chapter we motivate the construction of our formal meta-logic that supports proof
about higher-order encodings of deductive systems. In particular, we demonstrate how to define
recursive functions over simply-typed A-terms, and ordinary (Chapter 2) and parallel reduction
relations (Chapter 3).

4.2 Methodology

A meta-logical framework is an extension of a logical framework. Besides the representation
layer, it provides an explicit layer that supports formal arguments about representations. This
section is designed to lead the reader into the area of formalizing the meta-theory of deductive
systems. In particular, we start with the formalization of closed meta-theorems and their proofs
in Section 4.2.1, i.e. meta-theorems where all participating derivations can be assumed to be
closed that is $ is guaranteed to be empty. In the Section 4.2.2 we generalize those techniques
to open meta-theorems, and finally in Section 4.2.3 we extend these techniques to mutually
dependent theorems.

67

68 4.2. METHODOLOGY

Informal Reasoning

Chnrch-Rosser theorem
Cut-elimination theorem
Type preservation properties

Meta-Logical Framework

Meta-logic M.\
Propositions-as-formulas
Proofs-as-realizers

Informal Specification

Simply-typed A-calculus
Logic calculi
Operational semantics

Logical Framework

Type theory LF
Judgments-as-types
Derivations-as-objects

Process of representation/formalization/encoding

Figure 4.1: The meta-logical layer

4.2.1 Closed Meta-Theorems

In Chapter 3 we have presented a list of theorems which led to the proof of the Church-Rosser
theorem for the simply typed A-calculus. Each proof followed very similar principles. We
begin with the proof of the transitivity Lemma 3.1 for ordinary reductions. Two derivations
V\ :: e —*-* e! and T>2 ■'■ e' —-t e" are given, from which a third is to be constructed
V :: e —$■ e". The formulation of all theorems are very similar in structure. A theorem
typically consists of a block of universal quantifiers followed by a block of existentials. In the
literature, formulas of this kind are called n2-formulas [Rog92]. The index "2" expresses that
only one quantifier alternation is admitted, and the "IT' specifies that the first quantifier block
is universal. For the formalization of Lemma 3.1 we omit the leading universal quantifier for e,
e', and e":

VDi-e -U e'.VV2::e' -^ e".3V::e -U e".T

Intuitively, representing this theorem in the meta-logical framework must yield a function which
maps objects of type re o'n - and objects of type re' e"n to objects of type re ,jn

Therefore, the universal quantifier can be read as a new function space constructor "D" for
recursive functions:

e')D De e")

The recursive function space is different from the parametric, in that it allows function definition
by cases, for the proof that goes by induction on T>\. The recursive function space is part of a
new conceptual layer above LF, the so-called meta-logic as shown in Figure 4.1. All quantifiers
are first-order. In particular, the meta-logic we present in this thesis is the meta-logic M-2
which extends previous work [SP98]. It is presented informally in this section and formally in
Chapter 5. The soundness of the meta-logic is based on an argument very similar to the one
used in constructing the Curry-Howard isomorphism. It is based on a readability interpretation
of meta-proofs as total recursive functions, which we call realizers. A realizer computes for any
instantiation of the universal quantifiers some witness objects for the existentials. Back to the

68

CHAPTER 4. META-LOGICAL FRAMEWORKS 69

representation of the transitivity theorem.

■ ■ - r ' rVVx :: e -^ e'. VV2 :: e' -^ e". 3P :: e -^ e". T^ =

VL> : re -^ en. V£ : re' -^ e'n. 3P : re -A e'n. T

The V quantifier can be read as the recursive function space constructor (similar to a dependent
IT type constructor), 3 can be read as S-type constructor, and T as unit type, all on the meta-
level. Strictly speaking, this version of the theorem is not complete since we must also universally
quantify over all free variables:

Vr :: tp. Ve :: term r. Ve' :: term r. Ve" :: term r.

VZ?i::e -^ e'.VV2::e' -^ e".3V::e -^ e".T

It translates directly into a formula of the meta-logic. For better presentation, we frame the
mathematical formulations of the theorems from Chapter 3.

Lemma 4.1 (Transitivity of —> , formalized)

//Pi :: e -^ e' and V2 :: e1 -A e" then e -A e".

= VT : tp. VE : term T. VE' : term T. VE" : term T.

VDX:E -U E'.VD2 : E' -U E". 3P : E -^ E". T

Each variable that occurs in another type in the theorem is called an index variable. Different
from the logical framework level, where we have a type reconstruction mechanism as described
in Section 2.4.1, type reconstruction on the meta-level may lead to ambiguous results, because
it cannot be uniquely determined if index assumptions are to be universally or existentially
quantified. Consider the abbreviated version of the Church-Rosser theorem

VD:Ei <—► Er. 3i?i : Et -^ E'. 3R2 : Er -^ E'. T

where it is impossible to determine J5"'s status.

VT : tp. VEi : term T. VEr : term T.

VD:Ei <—■> Er. 3E' : term T. 3i?i : Ex -^ E'. 3R2 : Er -A E'. T

Meta-theorems are encoded using recursive functions spaces, and therefore meta-proofs are
represented by recursive functions. Throughout this section, those functions are written in an
ML-like style with the important difference that the arguments do not range over ML-datätypes,
but over LF objects well-formed according to a given signature. We repeat the signature encoding
the —y -relation in LF from Section 2.5:

—> : term T —>■ term T ->■ type

rbeta : (app (lam E\) E2) —U E\E2

rlam : (ILr : term T\.E x —> E' x)

-»• (lam E) -^ (lam E')

rappx : E\ —> E[

-> (app Ex E2) -±> (app E\ E2)

rapp2 : E2 -±+ E'2

-^{appExE2) -^ (a,ppExE'2)

69

70 4.2. METHODOLOGY

Informally we have proven the transitivity Lemma 3.1 already in Section 3.2.1. For the sake
of a clearer presentation we repeat it here.

Proof: (of Lemma 3.1) by induction over Vy.

by assumption

Case: Vx =
e -
 rid
*
—> e

X>2 ::e
*

y e"

v'l

Case: V\ —
e -U e'" e'" -^ e'

e -A e'

V :: e'"
*

■» e"

Q::e
*

e"

rstep

by i.h. on V'[and £>2
by rstep on V\, "P

D

It is this proof which is encoded as the realizer trans. The informal way of stating "proof by
structural induction on V\'' from the proof of Lemma 3.1 is translated into "trans terminates
because the argument D\ decreases in size with every recursive call". When totally explicit,
trans expects six arguments T,E,E',E",D\, and D2, but, for our purposes we will omit the
first four (implicit) arguments in order not to clutter the presentation. This leaves trans with
only two arguments D\ and Di

fun trans D\ D2 = ■ ■ ■

which we gradually refine until it defines a total function. Keywords and function names are
typeset in bold type face in order to make the difference between the meta-level and the language
level more explicit. The proof of Lemma 3.1 proceeds by induction on V\. As we have seen,
induction translates into a case analysis, generating two cases for D\.

fun trans rid D2 = ...
| trans (rstep D[D'{) D2 = ...

Recall that the reason why we can use pattern matching here is that once instantiated, D\ has a
canonical form (by Theorem 2.6). D\ will be bound to some (here closed) LF-object M, which
matches either with the first or with the second case, but it must match — the case cover must
be complete, "rid" and "rstep" are the only two constructors for type family —> . The first
case can be directly finished by returning object D2.

fun trans rid D2 = D2

| trans (rstep D[D'{) D2 = ...

The second case is more difficult. The original proof proceeds with the application of the
induction hypothesis, followed by the construction of the witness derivation. In this setting,

70

CHAPTER 4. META-LOGICAL FRAMEWORKS 71

we use termination orders [RP96] to express the well-foundedness of the induction scheme: the
recursion will terminate, because with each recursive call, the first argument decreases in size,
and since the subterm relation is well-founded the recursion will eventually come to a halt.
Translated into formal jargon, we first execute a recursion operation on D" and D2 keeping
in mind that we always have to justify why recursion does not invalidate the totality of the
function. For this particular example, the case is clear. The induction hypothesis holds for V'[
because V" is smaller than V\:

l
e"' e'" -^ e'
 rstep

e'

In LF, D" is smaller than £>i because D" is a subterm of Dx. Termination orders are presented
in detail in Section 7.2.

fun trans rid D2 = D2

I trans (rstep D[D'{) D2 =
let

val P = trans D'{ D2

in

end

Finally, we return object "rstep D[P" and replace the last set of ... to arrive at the final version
of the function.

fun trans rid D2 = D2

I trans (rstep D[D") D2 = ■
let

val P = trans D'{ D2

in
rstep D[P

end

We say, that trans is a realizer of transitivity theorem, and use the following shorthand:

h trans G Vr :: tp. Ve :: term r. Ve' :: term r. Ve" :: term T.

VDi::e -^ e'.MV2 :: e' -U e".3V::e -^ e".T

The "G" symbol is reserved for validity on the meta-level whereas ":" only expresses validity on
the language-level as defined in Section 2.4. We postpone the formal presentation of the "G"
relation until Chapter 5.

Using the technique of successive refinements, we continue our quest for a formalized version
of the Church-Rosser theorem with the encoding of Lemma 3.2. On first sight, all three cases of
the lemma are very similar, but on the second, one recognizes, that the first is different from the
second and the third: e and e' may contain the free variable x, whereas all terms in the other
two cases are assumed to be closed. Without higher-order representation techniques, this lemma
cannot be directly represented, but in our case it can: the representations of e :: term n,e' ::
term T\ and V :: e —> e' are functions, parametrized in x :: term T2. More precisely:

71

72 4.2. METHODOLOGY

re :: term Tin = Xx : term rr2~
l. re"1 : term rT2

n —)• term rT]n

where rxn = 3;
re' :: term ri"1 = Ax : term rTp. ren : term rT2_l -> term rrin

where r./r"1 = x
rV :: e -H> en = A.r : term rT2

n. ren : term rT2~1 -> (re"1 .7; —
where rx~l = .T

ren x)

This encoding is adequate, and again, this result rests on the canonical form Theorem 2.6.
The representation of the derivation V :: e —> e' is a function, and it can take exactly one of
the two possible forms

rV~i = Xx: term T2. rid
rV~i = Xx : term T2.rstep (Dx x) (D2 x)

The representation of all three cases in Lemma 3.2 follows by successive refinement.

Lemma 4.2 (Admissible rules, formalized)

1. IfD :: e —> e' then Xx : r2. c. —> Xx : T2. e!

VTi : tp. VT2 : tp. V£ : term, T2 -> term, T]. VE' : term, T2 -> term T].
VD : Ux : term, T2. E x -^ E' x.
3P : lam, (Xx : term, T2.Ex) -U lam, (Xx : term T2. E' x).T

2. IfV :: e.\ —> e[then e\ e2 —> e\ e2

VTi ni : tp.VT2 : tp.VE] : term, (T2 arrow Ti).VE[: term, (T2 arrow T{).VE2 : term,T2.

MD-.Ex -^ E[.
3P : app Ex E2 -U app E[E2. T

3. IfV :: e2 —> e2 then e.\ e2 —> e\ e2

VTi : tp.VT2 : tp.VEi : term, (T2 arrow TX).VE2 : termT2.VE!2 : term,T2.

\/D:E2 -U E'2.
3P : app Ex E2 -U app EA E'2. T

Proof: The termination order is subterm order on D in all three cases.

1. fun admissible] (Xx : term T2. rid) = rid
I admissible] (Xx : termT2.rstep (D\ x) (D2 x)) =

let
val P = admissible] (A.T : term T2. D2 x)

in
rstep (rlam (Xx : term T2.D\ x)) P

end

72

CHAPTER 4. META-LOGICAL FRAMEWORKS 73

2. fun admissible2 rid = rid
| admissible2 (rstep D\ D2) =

let
val P = admissible2 D2

in
rstep (rapp: D\) P

end

3. fun admissible3 rid = rid
I admissible3 (rstep Dx D2) =

let
val P — admissible3 D2

in
rstep (rapp2 D\) P

end

D

The intended way to read this formalized lemma, is that the proofs admissiblei,
admissible2, and admissible3 are functions in the encoding of Theorem 3.2, i.e. more for-
mally:

h admissiblei € rIfP: : e - —> e' then Xx : r. e — -» Aa; : r. e/_l

\- admissible2 e rUV: : ei —> e[then e\ e2 —H> ei e2
n

h admissible3 e rltV: : e2 —> e2 then e\ e2 —> ei e2
n

The function trans and the family of admissible functions make use of only three of the
proof operations, we have presented in Chapter 3: direct construction, case analysis, and appli-
cation of the induction hypothesis.

4.2.2 Open Meta-Theorems

In the remainder of this section we will continue to formalize the meta-theorems and meta-proofs,
with special emphasis on the parameter operation, which is used for example in the formulation
of Lemma 3.4 and its proof. Lemma 3.4 guarantees that each term parallel reduces to itself: for
every expression e there exists a derivation of e => e.

The theorem is only provable if stated in appropriate generality; it must be so general, that
it accounts for the term e to be well-formed in a regular extension of the world of the form

$::= $, x :: term T,U :: x

and then, the resulting derivation V :: e => e is valid in the same world $. Clearly, none of
the techniques introduced so far, can be directly applied to encode this theorem; we must define
an operator to allow quantification over those regularly formed world. The encoding of world
extensions yields an LF context which we call parameter context. Similarly, each extension of
the world is represented by a parameter context fragment called a parameter block. Parameter

73

74 4.2. METHODOLOGY

blocks must be regularly formed, i.e. they must be instantiations of some abstract description
called a block schema. In our example, the block schema has the form:

SOME T : tp. BLOCK x : term T, u : x =U x

which reads as follows: for some object T of type tp, a parameter block must be an «-variant

of x : term T, u : x ==> x. Block Schemas are partial descriptions of the form of a parameter
contexts. Consequently, repeated instantiations of the block schema, yields a valid parameter
context. Hence, a single block schema describes entire sets of parameter contexts, and therefore
we refer to it as context schema for the remainder of this section. A motivation for more complex
context Schemas can be found in Section 4.2.3.

The well-formed world extension

1 L 1 Xy :: term T\,uy :: x,\ ==> xy,... ,x„ :: term rn.urt :: xn ==> xn

is hence represented in the meta-logical framework as

xy : term rTyn,Uy : Xy =4> x,y,... ,.'/;„ : term rr?,"
1,un : xn => xn

and it is an instance of the context schema from above.
In order to express quantification over regularly formed contexts we extend the formal lan-

guage of theorems provided by the meta-logical framework by a new operator D. With its help,
we can finally formalize of the reflexivity Lemma 3.4:

Lemma 4.3 (Reflexivity theorem, formalized)

Let $ the dynamic extension of the world. Then for any well-typed term e,

there exists a derivation of e =>■ e

DSOME T : tp. BLOCK x : term T, u : x =U x.

VT : tp. ME : term T.3D : E =^ E.J

The next question we must address is how meta-proofs of meta-theorems using context
quantification are represented. We begin with the definition of the proof representing func-
tion refl which we define by successive refinement keepitig in mind that the context scheme

"SOME T : tp. BLOCK x : term T,u : x =^> x" is associated with refl.

fun refl E = ■ • •

The informal proof proceeds by induction over e, which is formalized by the subterm order on
E. Case analysis is not as straightforward as for the transitivity lemma for ordinary reduction
above: in addition to the cases introduced by the signature it must also consider parameter cases
from $. In our example, there can only be one: E = x. Since parameter contexts are regularly
built, it follows by inspection of the context scheme that x must be declared in a parameter

block of the form x : term T, u : x =^ x. Obvioxisly, the parameter context can be composed
of many instantiations of the block schema, and in order to completely cover all possible forms
of E, we would have to provide a case for each possibility. This is impossible, since we would
have to consider infinitely many cases!

74

CHAPTER 4. META-LOGICAL FRAMEWORKS 75

Fortunately, there is a feasible and more elegant solution to this problem. We can take
advantage of the regularity of the parameter context $. As long as the proof of a parameter
case does not take advantage of the relative position of parameter blocks among each other,
but only of other assumptions declared in the same parameter block, we can arrange things
so that all infinitely many cases are covered by one single case: Instead of distinguishing cases
over all parameter contexts, we consider simultaneously all parameter contexts which contain a

parameter block of the form x : term T,u : x =>• x. Naturally x and u do not stand for a
single parameter occurrences any more, but rather for a whole class, and in order to make this
distinction explicit, we write x and u for variables ranging over parameter blocks.

Consequently, a case analysis of E yields three new cases, first a parameter case, second a
app case, and the third a lam case:

fun refl x = ...
| refl (lam (\x : term T.E' x)) = ...
| refl (app E\ E2) = ...

We incrementally construct this realizer by filling in the three holes ... top to bottom. First, we
discuss the global parameter case for E = x. The original proof case can be immediately closed
with itj. Note, that here rxf{ — x.

Case: e =
term r,-

lli .. Xi Xi by assumption

On the formal side
l

rup — u can also be used to fill the first hole since it is the only object of
desired type x =» x. Note, that this is the only information we extract from $ and therefore
we do not need to pass <& along in the definition of refl. Instead, information about x and u can
be directly extracted from the context schema.

SOME T : tp. BLOCK x : term T, u : x

Therefore, the LF signature E describes the static part of the world and the abstract specification
of $ its dynamic extensions. These two descriptions contain all information needed to complete
and to formalize the proof.

fun refl x = u
| refl (lam (Xx : term T. E' x))
| refl (app E\ E2) = ...

75

76 4.2. METHODOLOGY

We continue the construction of the realizer by revisiting the lam-case of the proof.

• Xn+\
term T\

e'
term r-i

term (T\ —¥ T2)

Assume xn+\ :: term n

Assume u„+i :: xn+\ =$■ xn+i

V::e' =U e' by i.h. on e'

Q :: A.Tn+i : term T\.e' => \xn+i : term T\ . e' by rule plam on V

In order to apply the induction hypothesis to term e', we appropriately extend the world in a
way prescribed by the context schema. Only new instances of the block schema can be used,

and in this case we refer to it as x : term rT\~[,u : x ==> x. The parameter context remains
regularly formed after adding these two new declarations.

fun refl x = u
I refl (lam (Xx : term T. E' x)) =

let

new x : term T. u : x =>• x

in

end
I refl (app E\ E2) = ...

In this extended context, we apply the induction hypothesis to expression ren = E' x and
obtain an object P, which is still defined in the extended context. Note that P represents a

derivation V :: e' ==> e' by the adequacy result from Lemma 3.3. But V is hypothetical in

u :: x ==> x (and naturally in x :: term n).

i
x ==> x

V

±> e' = Tlx : term rr^. Uu : x =U x. {E' x) =i» (E' x) (4.1)

In order to make P = rVn available to the subsequent operations of this proof case, we insert

76

CHAPTER 4. META-LOGICAL FRAMEWORKS

another declaration into the body function refl.

77

fun refl x = u
| refl (lam (Xx : term T. E' x)) =

let

new x : term T,u:x =4> x
val P xu = refl (E' x)

in

end
| refl (app E\ E2) = ...

The derivation V matches the premiss of the plam-rule and we return
"plam (A.-E : term T. Xu : x x.P x u)" which closes this case in the proof.

fun refl x = u
| refl (lam (Xx : term T. E' x)) =

let

new x : term T,u:x =$> x
val P xu = refl (E' x)

in

plam (Xx : term T.Xu : x ==> x.P x u)
end

| refl (app E\ E2) = ...

The representation of the final case in the proof of the refiexivity theorem does not present any
new concepts or difficulties.

Case: e

e\ e2

term (r2 —> n) term T2

term T\

Pi
l

: d ==> ei

v2 : e2 =» e2

Q:
l

app ei e2 =^> app ei e2

app

by i.h. on ei

by i.h. on e2

by rule papp on V\, V2

Two applications of the induction hypothesis provide two new objects representing derivations,
Pi and P2 which form as pair the return value of this case. In order to compare the informal
formal proof and its representation as a realizer, we repeat the proof here.

Proof: (of Lemma 3.4) by structural induction on e:

Case: e
term r,

■ Xj,

Hi .. Xi by assumption

77

78 4.2. METHODOLOGY

term n
■Xn+l

Case: e =

e'
term T2

lamx"+1

term (n —> r2)

Assume £n+i :: term n

Assume «n+i :: xnJr\ => xn+i

V::e' =U e'

Q :: \xn+i : term T\.e! =^ A.r„+i : term T\.e'

by i.h. on e'

by rule plam on V

ei e2

tei m (r2 -> n) term T2

: e
term T\

Vi : ei =
1,

■ ei

Vi : e2 =
1,

> e2

app

Q :: app ej e2 app ei e2

by i.h. on ei

by i.h. on e2

by rule papp on V\,V'2

D

Proof: (realizer of Lemma 4.3)

• termination order is a subterm order on E

• using context schema "SOME T : tp. BLOCK x : term T,u : x

fun refl x — u
I refl (lam (\x : term T. E' x)) =

let

new x : term T,u:x =^> x
val P xu = refl (£' z)

in

plam (A.T : term T. Aw : x
end

refl (app E\ E2) =
let

val Pi = refl Ex

val P2 = refl E2

in
papp Pi P2

end

x.P x u)

D

78

CHAPTER 4. META-LOGICAL FRAMEWORKS 79

fun partrans xD2 = D2

| partrans pid D2 = D2

| partrans (pstep D\ D'() 02 =
let

valP = part rans D[D2

in

pstep D[P
end

Figure 4.2: Formal proof of the transitivity Theorem 4.4.

This concludes the presentation of the formalization of the proof of the reflexivity lemma for
parallel reduction and we continue with the formalization of the transitivity Lemma 3.5 and the
substitution Lemma 3.6 both for parallel reduction. The formalization of the proof itself is very
similar, almost identical to the one of transitivity Lemma 4.1 for ordinary reduction.

Lemma 4.4 (Transitivity of ====> , formalized)

Let $ be the dynamic extension of the world. If Vy :: e => e' and T>2
e' ==> e" are closed then e ==> e".

D-.VT : tp.ME : termT.ME1 : termT.VE" : termT.

MDX:E^ E'.\/D2 : E' ==V E".3P : E =^ E".T

Proof:

• termination order is a subterm order on D\

• with an empty parameter context

Figure 4.2 shows the formal proof. □

The proof of the substitution lemma does not provide us with any new fundamental insights
into how to formalize meta-theorems and meta-proofs either.

79

80 4.2. METHODOLOGY

Lemma 4.5 (Substitution lemma, formalized)

Consider the situation where a list of the following assumptions is present

x\ :: term, T\ ,U\ :: x\ => x\,..., x„ :: term rn, uTI :: xr,

If

y => y
v

e\
l

and £ :: e2 =$■ e2 then exists a reduction e,][e2/y] ==> ^[[e^/y].

DSOME T : tp. BLOCK x : term, T,u:x =k> x.
VT] : tp. VT2 : tp. V£?i : term T2 -> term, Tx. VE[: term T2 -4 term T\.
VE2 : term, T2.VE'2 : term T2.

VI>i : (Uy : term,T2.y =U y -> £j y =U £j y).VL>2 : #2 =^ #2

3P:Ei £2 =^ £{ ££.T yl ^2-

2-

As in the proof of Lemma 4.2 we have to perform a case analysis on the hypothetical deriva-

tion V. Because it is hypothetical, rV~l = Xy : term T2.\v : y => y.D' five different cases of
D' have to be considered: D' could be either a parameter u declared in the dynamic extension
of the world <&, simply v, or an object starting with any of the three constants "pbeta", "plain",
or "papp".

Proof:

• termination order is a subterm order on D

using context schema "SOME T : tp. BLOCK x : term T.u : x =>• .7;"

Figure 4.3 shows the formal proof. D

With the diamond lemma, arguably the most difficult lemma presented in Chapter 3, we
shed some more light on the normalization process of the meta-theory of object languages such as
programming languages and logics, and also the meta-logic we are going to present in Chapter 5.
So far we have demonstrated how to formalize "proofs by structural induction" using several
operations, such as case analysis, direct construction of witness objects, appeals to the induction
hypothesis, and regular extensions of the world. In addition, the formalization of the diamond
lemma requires appeals to lemmas and extensions of termination orders.

80

CHAPTER 4. META-LOGICAL FRAMEWORKS 81

fun subst (Xy : term T'. \v : y => y.u) E = u

| subst (\y : term T'. Xv : y => y.v) E = E

| subst (Ay : term T'. Xv : y => y. pbeta (Xx : term T. Xu : x => x. D\ y v x u) (D2 y v)) E ■■
let

new x : term T,u: x => x

val Pi xu — subst (Xy : term T'. Xv : y =4> y.D\ y v xu) E
in

let

val P2 = subst (Xy : term T1 .Xv : y => y. D-i y v) E
in

pbeta Pi P-2
end

end

I subst (Xy : term T'. Xv : y => y. plam (Aa: : term T.Xu: x => x. D\ y v x u)) E =
let

new x : term T,u:x => x

val Pi x u = subst (Xy : term T'. Xv : y => y. D\ y v xu) E
in

plam Pi
end

I subst (Xy : term T'. Xv : y => y. papp (Di y v) (D-2 y v)) E =
let

val Pi = subst (Ay : term T'. Xv : y => y. Di y v) E

val P2 = subst (Xy : term T'. Xv : y =^> y. D> y v) E
in

papp Pi P2

end

Figure 4.3: Formal proof of the substitution Lemma 4.5.

Lemma 4.6 (Diamond lemma, formalized)

Let $ be the dynamic extension of the world. If T>1 :: e => el and T>r ::

e =^> er then there exists a common reduct e', such that 1Zl :: el => e'
and TV :: er =4> e'.

DSOME T : tp. BLOCK x : term T,u:x =k> x.
VT : tp. VE : term T. VEl : term T. V£r : term T.

V£>' :E =±> El.\/Dr : E =U Er.

3E' : term T. 3Rl : El =U E'. 3Rr : Er =U E'. T

As we have presented the proof of the diamond Lemma 3.7 in Chapter 3, it proceeds by
simultaneous structural induction over the derivations Vl and Vr. Specifically, an induction
hypothesis is applicable to two parallel reductions V'1 and V'r given that V1 is a subderivation
of V1 and V'r is either equal to or also a subderivation of VT. Formally, the proof principle "proof
by simultaneous structural induction" is represented by a new termination order, a simultaneous
extension of the subterm ordering. We write [Dl Dr] for this new termination order and it is
defined as follows: A pair of objects [Dn D'r] is smaller than [Dl Dr], if either

81

82 4.2. METHODOLOGY

D'1 is structurally smaller than D1 and either D'r =
smaller than Dr

Dr or D'r is a structurally

or

either D'1 = Dl or Dn is a structurally smaller than Dl and D'r is structurally smaller
than Dr.

Another very common termination principle is "proof by lexicographical structural induction",
which we will not demonstrate by example but merely state here. It is used for example in the
proof of cut-elimination for various logics [Pfe95].

A proof by lexicographical induction on V1 and Vr provides induction hypothesis, which can
be applied to terms £>" and V'r as long as V'1 is a subderivation of V1 and V'r is arbitrary, or
V1 = V1, and V'r is a subderivation of Vr. Formally, we write {D',Dr} for the lexicographical
termination ordering. We say that {Drl,D'r} is below {D,,Dr}1 if either

D'1 is structurally smaller than D1, and D'r might be arbitrary

or

jjil _ jjl an(j £)ir -g structurally smaller than Dr.

Termination orderings based on simultaneous and lexicographical extensions of the subterm
ordering have been studied in [RP96]. We reuse those results in order to prove that each
recursive function formalizing a meta-proof is terminating. Recall that realizers must be total
functions, specifically upon instantiation they must terminate and the execution can never get
stuck. Termination is enforced by allowing only recursive calls on argument vector that are
smaller according to some a priori specified well-founded termination order.

The first two cases of the proof of Lemma 4.6 deserve special attention. We start with the
discussion of the base case:

Case: V1 = l
u

X => X

Vr = ^ U

X => X

e' = x
nl = nr = u

by assumption
by assumption

How did this case come aboiit? First, we distinguish cases on the derivation V and consider

the global case, where x :: term T, and u :: x => x. Second, we distinguish cases on £>'',
and because the parallel reduction Vr starts with the same term ,T, we conclude, that the only
possible instantiation of Vr is u. There are no other cases to be considered for Vr.

Formally, the proof of the diamond lemma is expressed by a function mapping two represen-
tations of parallel reductions D1 and Dr to two other parallel reductions i?.' and B.1 in order to
form a diamond — graphically speaking.

/ fun dia Dl Dr

First we distinguish cases of D . For brevity, we only show the global parameter and the /5-rule
case.

82

CHAPTER 4. META-LOGICAL FRAMEWORKS 83

fun dia uDr = ...

| dia (pbeta (Xx : term T.Xu : x ==> x. D[X U) Dl
2) D

r =

Assume, that there is one parameter context containing several parameter blocks, and each
parameter block is an instance of the given block schema. At this point Dr is instantiated with
some u of one of the parameter blocks. It is not clear if it is the first, the second, or the last, all
we know, that there is one it is instantiated to. Clearly, Dr is a derivation which reduces x (the
other assumptions associated with the parameter block which contains u) to some term er.

Next we have to consider all cases for Dr. Again there are several cases to be considered. The
first case to try is that Dr = v assuming that the regular world extension contains a parameter

block of the form y, v. Hence Dr : y =» y. We notice, that this can only be the case if x and
y_ refer to the same parameter in the same parameter block in <E>, since from the case analysis

on Dl we can infer that Dr : x => Er. Therefore Dr — u = v and x = y. This is the first
possible form of Dr. It is also the only possible form of Dr, because any other instantiation of
Dr whose head constant is defined in the signature clashes with the fact that Dr stands for a
reduction of x.

fun dia uu = ...

| dia (pbeta (Xx : term T.Xu : x =» x. D[X U) Dl
2) D

r = ...

Why is this kind of argument sound? It is sound, because we start with a minimal amount
of information, namely that there exists a second parameter block in the parameter context,
and it is only because of additional constraints that we can identify it with one whose existence
we have already assumed. In order to close this proof branch, we simply return the pair (u,u).

fun dia u u = (u, u)

| dia (pbeta (Xx : term T.Xu : x =» x.D\ X U) Dl
2) D

r = ...

The second case of the proof demonstrates an appeal to the a lemma. It is the substitution
Lemma 3.6 discussed above.

83

84 4.2. METHODOLOGY

u

x

e\

x
V
-U J e-2

V>2

Case: V
(Xx-.r.ei) e2 =U e[[el

2/x]
pbeta"

x

ei

V\ VI
e2

Vr =
(A:r':r.ei) e2 => e^/x]

Extend $ by .7; : term T, U :: x
There exists an e[

V, :: e< =4 e^

V2 :: ^ =^ e'i
There exists an e2

pbeta"

x to $'

02 :: e^ =^> e?

fti::«^/*] =
Tl2 :: eftej/a:] = e'Ae'Jx]

by i.h. onP'„DJ in $'

by i.h. ouV!2,V2' in $

by Lemma 3.6 on Vi, Q]

by Lemma 3.6 on V2-, Q2

And again as in the previous case, an analysis of the second derivations leaves only one case.
After two more appeals to the induction hypothesis we obtain the following partially defined
realizer dia.

fun dia uu = (u, u)

I dia (pbeta (Xx : term T. Aw : x => x. D\ X U) D2)

(pbeta (A.T : term T. \u : x =U x. D\ x u) DT2) =
let

new x : term T,u:x ==> x
val (Pi xu,P2xu) = dia (D[x u) (D\ x u)

in

let
xa\(Ql,Q2) = dia D!2D

r
2

in

end
end

84

CHAPTER 4. META-LOGICAL FRAMEWORKS 85

According to the informal proof the only steps missing to close this branch of the proof are
two appeals to the substitution Lemma 3.6. In order to apply a lemma, we first have to ensure
that the context scheme of the lemma to be proven (i.e. the diamond lemma) and the lemma
to be applied (i.e. Lemma 3.6) are compatible. In a nutshell, a lemma cannot be applied in a
parameter context which is larger than the one in which the lemma is proven, in the sense, that
the lemma must always guarantee coverage of all cases. These considerations establish a notion
of subsumption on context Schemas which we investigate in more detail in Section 5.7.2.

The context schema associated with the proof of substitution Lemma 4.5 and the context
schema associated with the diamond lemma are equal, which informally implies that the sub-
stitution lemma covers all cases. More specifically, it is safe to appeal to the substitution in the
proof of the diamond lemma.

Having checked the subsumption property of the context Schemas, the application of lemma
translates to function application on the meta-level. subst formalizes the proof of the substi-
tution lemma in form of a recursive function; applying this function yields objects representing
the derivations whose existence is guaranteed by the lemma. Specifically, this case of the proof
requires two appeals to the substitution lemma which yield two objects E\ and E^.

fun 'dia «« = («, u)

| dia (pbeta (Xx : term T.Xu : x ==> x. D[X U) Dl
2)

(pbeta (Xx : term T.Xu : x ==» x. D\ x u) D2)
let

new x : term T,u:x =4> x
val (Pi xu,P2Xu) = dia (D[x u) (D\ x u)

in
let

va\(QuQ2)=disiDl
2D

r
2

val R[= subst Pi Qi
val i?2 = subst P2 Q2

in

end
end

As a matter of fact, Ri and R2 are the required two derivations which the function formalizing
this proof has to return. Therefore, filling the last hole in the body of the let clause with
(i?i,i?2) closes the proof branch.

85

86 4.2. METHODOLOGY

fun dia uu = (u, u)

| dia (pbeta (\x : term T. Aw, : x => x. D\ X V) D'2)

(pbeta (Xx : term T. Xu : x => x. D\ x u) DT2)
let

new x : term T,u:x => x
val (Pi xu,P-2xu) = dia (D[x u) {D\ x u)

in
let

val(Qi,Q2)=dia^^
val i?i = subst Pi Q\
val R-2 = subst P'2 Q2

in

end
end

The remaining cases are easily represented using the same techniques presented in this chap-
ter. The diamond lemma is therefore correct, and the function dia a formalization of its proof,
keeping in mind the context schema which was used to determine all the cases.

Proof: of Lemma 4.6:

• termination order is a sub-term order on [D1 Dr]

• using context schema "SOME T : tp. BLOCK x : term T,w, : x =^> x"

Figure 4.4 shows the formal proof. □

The diamond lemma is used in the proof of the strip lemma. It guarantees that a multi-step
parallel reduction and a single-step parallel reduction have a common reduct. The theorem need
not to be as general as the reflexivity Lemma 4.3, the substitution Lemma 4.5, or the diamond
Lemma 4.6; we assume the parameter context to be empty. Naturally, since every empty pa-
rameter context is also a parameter context of the context schema "SOME T : tp. BLOCK x :

term T,u : x => x", the diamond lemma can be used for the proof of the strip lemma.

Lemma 4.7 (Strip lemma, formalized)

Let $ be the dynamic exten sion of the world. IfV1 ■■ 1
e1 and, Vr

* ^
er th en there exists a common reduct e', such that K-i 1 *.. e'

and TZ 2-.:er =U e>.

□ -.VT : tp.VE : termT.VE* : termT.VEr : termT.

VD' :E =U El.\/Dr : E =^> Er.

3E' : term T. 3B1 : E1 =^> E'. 3Rr : Er =k E'. T

86

CHAPTER 4. META-LOGICAL FRAMEWORKS 87

fun dia uu = (u, u)

| dia-(pbeta (Ax : term T.\u:x =k> x.D[x U) D'2) (pbeta (Xx : term T.Xu.x =h- x.D\x u) DT2) =
let

new x : term T,u:x ==> x
val (Pi xu,P2xu) = dia (D[x u) (D\ x u)

in
let

val (Qi,Q2) = dia D2D
r

2

val Ei = subst Pi Qi
val P2 = subst P2 Q2

in
(Ei, E2)

end
end

| dia (pbeta (\x : term T.Xu: x ==> x. D[X U) D2) (papp (plam (Xx : term T. AM : a; =^> x. D'{ x u)) D2) =
let

new x : term T,u:x =>■ x
val (Pi x u, P2 x u) = dia (D[X U) (D'{ X U)

in
let

val (QUQ2) = dia D2DT2

val Ei = subst Pi Qi
in

(Pi,pbeta P2 Q2)
end

end

| dia (plam (Xx : term T. Xu : x ==> x. D[X U)) (plam (Xx : term T.Xu : x =^> x. D\ x u)) =
let

new x : term T,u:x ==> x
val (Pi xu,P2xu) = dia (Pj a; M) (P[X U)

in
(plam Pi, plam P2)

end

| dia (papp (plam (Xx : term T. AM : a* =^> x. D'{ x u)) Dl
2) (pbeta (Ax : term T.Xu: x =^> x. Pi x M) D2) =

let

new x : term T,u:x => x
val (Pi xu,P2xu) = dia (P'/ x M) (P[X M)

in
let

val (Qi,Q2) = dia D'2Dr2

val P2 = subst P2 Q2

in
(pbeta Pi Qi,E2)

end
end

| dia (papp Pi P2) (papp D{ DT
2) =

let
val(Pi,P2) = diaP'i D\
val(Qi,Q2) = diaP2 P£

in
(papp Pi Qi,papp P2 Q2)

end

Figure 4.4: Formal proof of the diamond Lemma 3.7

87

4.2. METHODOLOGY

fun strip D' pid = (pid, £>')
| strip D' (pstepDI Dr

2) =
let

val (P,,P2) = dia£>' DI
val(P3,P2) = strip P2 Dl

in
(pstepPi P3,E-2)

end

Figure 4.5: Formal proof of the strip Lemma 3.8

Proof:

• termination order is a subterm order on Dr

• with an empty parameter context

Figure 4.5 shows the formal proof. □

The confluence lemma, a generalization of the strip lemma, by allowing both given reductions
to be multi-step reduction, relies on the strip lemma in its proof as the reader might recall from
Section 3.2.3.

Lemma 4.8 (Confluence lemma, formalized)

Let $ be the dynamic exten sion of the world. If V1 :: e
* ^

e> and Vr

* ^
er th en there exists a common redact e', such tin it Hi e> e'

and V, 2::er =^ e'.

D-. VT : tp.VE : term T.VE1 : term, T.\/Er : term, T.
\/D' :E =^=> El.\/Dr :E^Er.
3E' : term T. 3R1 : E' =^ E'. 3Rr : Er =^> E'. T

Proof:

• termination order is a subterm order on Dl

• with an empty parameter context

Figure 4.6 shows the formal proof. □

In the proof of the Church-Rosser theorem, all our results so far flow together. The interesting
case is transitivity: Two appeals to the induction hypothesis, one application to the confluence
lemma, and finally two appeals to the transitivity lemma for parallel reduction conclude that
any two parallel convertible terms have a common reduct.

CHAPTER 4. META-LOGICAL FRAMEWORKS 89

fun conf pid Dr = (£>r,pid)
| conf (pstep D[Dl

2) D
r =

let
val (Pi,P2) = strip D[Dr

val (Ei, P3) = conf Dl
2 PI

in
(Ei,pstep P2P3)

end

Figure 4.6: Formal proof of the confluence Lemma 3.9

fun cr (pred Di) = (Di, pid)
I cr (pexp Di) = (pid, Di)
I cr (ptrans D\ D2) =

let
val(Pi,P2) = crßi
val (P3,P4) = cr D2

val(Qi,Q2) = conf P2P3
val E\ — partrans Pi, Q\
val Ei = partrans P2, Q2

in
(Ei,E2)

end

Figure 4.7: Formal proof of the Church-Rosser Theorem 3.10 for parallel reduction

Theorem 4.9 (Church-Rosser theorem for parallel reduction, formalized)

Let $ be the dynamic extension of the world. If V :: el ■<=> er then there
exists a common reduct e', such that Tl\ :: el => e' and TI2 '•■ er =^ e'.

n-.VT :tp. VEl : term T. V£r : term T.
VD:El ^=> Er.
3E' : term T. 3Rl : El ^ E'. 3Rr : Er =^ E'. T

Proof:

• termination order is a subterm order on D

• with an empty parameter context

Figure 4.7 shows the formal proof. □

This concludes our presentation of the formalization of meta-theorems and meta-proofs re-
lated to ordinary and parallel reductions. One could continue with the presentation of the proofs
of Lemma 3.11-3.14 from Section 3.2.4 and the interested reader is invited to do so, but we prefer
to leave them to the automated theorem prover, which will be presented in Chapter 8.

89

90 4.2. METHODOLOGY

4.2.3 More on Meta-Theorems

The fofmalization techniques motivated in the previous chapter are not complete. We have
omitted two important techniques, which we discuss in this section.

First, note that all parameter contexts presented in the previous section were generated by
at most one block schema. This is not always the case. In general, context Schemas consist of
many block Schemas, which makes it necessary to label different parameter blocks in a param-
eter context in order to reconstruct which context block is an instance of which block schema.
In particular, when we extend the simply typed A-calculus by polymorphism we also have to
generalize the induction hypothesis of the entire sequence the theorems accordingly.

Second, there are many theorems which must be proven by mutual induction. All theorems
from the previous section were provable on their own without mutually relying on any other
lemma. Consider for example the reflexivity result for a normalized version of the simply-
typed A-calculus, where we distinguish between atomic and canonical forms. The definition of
canonical forms relies on the definition of atomic forms, and this circularity must be reflected
in the meta-logic.

Context Schemas

Context Schemas inductively and abstractly describe all admissible parameter contexts. In the
previous section we have encountered one form of a context schema which is described by one

block schema: "SOME T : tp. BLOCK x : term T, u : x => .T". In general, one block schema
is not enough, since parameters can be introduced anywhere into the proof, and they may not
always look the same. In order to demonstrate this effect, we slightly extend our version of
the simply-typed A-calculus from Figure 2.2 by polymorphism. On the type level, we add type
variables a and a type quantifier Ma.T which binds all free occurrences of the type variable a in
r. The following extends the definition of types from Section 2.2.

Types: r ::= ... | a | V«.r

Those new types can be adequately represented using higher-order abstract syntax, which means
in this context that type variables are represented by LF variables: r«n = a.

all : (tp -» tp) -» tp

The changes in the type system reflect on the syntactic category of terms in a natural way.
On the one hand, there are polymorphic terms which expect a type as argument in order to
specialize the type of the body. And on the other hand, there is an application operator which
applies polymorphic terms to types and hence executes the specialization.

Terms: e ::— ... \ Aa.e | e • r

The term Aa.e is well-typed of type Va.r, if e is well-typed, assuming a as a new type, and e • r'
is well-typed of type T[T'/a] if e has type Ma.T and r' is a type. As one might already suspect,
this extended notion of terms can be adequately represented in the logical framework.

tlam : (Ila : tp. term (T a)) -> term (all (A« : tp. T a))
tapp : term (all (Xa : tp. T\ a)) ->■ UT2 : tp. term (all (A« : tp. Ti a) T2)

90

CHAPTER 4. META-LOGICAL FRAMEWORKS 91

Finally, we extend the parallel reduction relation from Section 3.2.2 with reduction rules for
type abstraction and type application. The rules are entirely straightforward.

ptlam
e=Ue'

ptapp
Aa.e Aa.e' e • r

In addition, they can be adequately represented in the logical framework.

ptlam : (Ila : tp. E a => E' a)

-> tlam (Xa : tp. E a) => tlam (Ac* : tp. E' a)

ptapp : E =>• E'

-» tapp ET =^> tappE'T

This concludes the presentation of an polymorphic extension of the simply typed A-calculus.
After extending it, one has to verify that the series of lemmas leading to the Church-Rosser
theorem still hold. They could be invalidated by extending the underlying deductive systems,
and indeed they are. Already the first theorem, namely the reflexivity property of the parallel
reduction relation (Lemma 3.4) does not hold anymore. Why not? In the original version of the
lemma we assumed the context to be

x\ :: term T\,u\ :: x\ => x\,... ,xn :: term Tn,un :: xn =; (4.2)

But this is not enough in order to prove reflexivity for the polymorphic parallel reduction. In
the ptlam case, we have to traverse a A-binder that binds a type variable a! But this assumption
does not fit into the overall structure of the assumption list (4.2). In general, we might assume
the presence of several type variables:

a\ :: tp,... ,am :: tp (4.3)

Assumption lists (4.2) and (4.3) may be arbitrarily interspersed while still respecting parameter
block boundaries. When formalizing the generalized version of the reflexivity lemma, we must
provide for these additional assumptions by adding a new block schema, in this case BLOCK a :
tp, to the context schema.

Lemma 4.10 (Reflexivity theorem for polymorphic parallel reduction, formalized)

Let

$::= 1 $ x :: i verm r, u :: x
l

$,a ::tp

a regularly formed extension ofth 3 world. Then for an y well- typed term e, there
exists a derivation of e

i
e.

= DSOME T : tp. BLOCK x : term T,u:x

VT : tp. \/E : term T. 3D : E =±>

a;|BLOCK a : tp.

E.T

91

92 4.2. METHODOLOGY

Therefore, context Schemas are defined as a list of block Schemas, and in order to identify
different occurrences of parameter blocks as instances of the same block schema, we assign a
necessarily unique label to each block schema. The first context block is labeled L\, and the
second is labeled L2-

D(SOME T : tp. BLOCK x : term T,u: x =U x)L' | (BLOCK a : tp)''2.

VT : tp. VE : term T.3D : E =U E.T

This concludes the discussion on more complex context Schemas. We continue with a brief
overview about mutually dependent meta-theorems.

Mutually dependent meta-theorems

We say that two or more meta-theorems are mutually dependent, if none of them can be proved
without the others. Mutually dependent theorems occur frequently in the formal theory of
programming languages and logics. Often they are needed if the argument proceeds by induc-
tion over the derivation of a judgment (or several, depending on the termination order) which
mutually depends on another. Consider for example our definition of canonical forms from Sec-
tion 2.4.3. Canonical forms are defined in terms of atomic forms, and atomic forms are defined
in terms of canonical forms.

Below we define canonical forms for the simply-typed A-calculus (without dependencies). In
this setting proving some property P for canonical forms typically requires another property Q
to be proven for atomic forms. Consider for example, the proof that canonical forms enjoy the
reflexivity property; it is also necessary to show that this property holds for atomic forms.

We omit the informal presentation of canonical and atomic forms and instead simply describe
their representation in LF. There are two type families can and at in which represent well-typed
canonical and well-typed atomic forms.

can : tp —>■ type
atm : tp —» type

Using these two type families, application and A-abstraction are easily represented, and for
coercion purposes, there is a rule very similar to canatm.

eapp : can (2~2 arrow T\) —> atm T? —> atm T\
elam : (atm T\ -¥ can T2) —> can (T\ arrow T2)
eca : atm T —> can T

Intuitively, each closed canonical term is well-typed. As expected this lemma cannot be
proven directly. First, it must be generalized to account for closed atomic terms, which are
clearly well-typed, too. But this is still not enough. When reasoning inductively about canonical
forms, one notices quickly that terms may be open with respect to a set of atomic well-typed
variables.

Lemma 4.11 (Embedding) Consider the situation where a list of the. following assumptions
is present

x\ :: atm, T{,yi :: term, T\, ... ,xn :: atm, Tn,yn :: term, r„

• Every canonical form, ec is well-typed

92

CHAPTER 4. META-LOGICAL FRAMEWORKS 93

• Every atomic form ea is well-typed

Proof: by mutual induction over ea and ec. D

In our meta-logic, this theorem is formalized by using conjunction.

Lemma 4.12 (Embedding (formalized))

DSOME T : tp. BLOCK x : atmT,y: term T.
(VT : tp. VEC : can T. 3E' : term T. T) A (VT : tp. \/Ea : atm T. 3E' : term T. T)

But how can we guarantee termination of the recursive function corresponding to the proof of
this theorem? In order to answer this question, we have to generalize the notion of termination
orders. From an abstract point of view, the realizer formalizing the first and the second part
of the theorem call each other recursively. In order to ensure termination, we must guarantee
that the argument to the functions always decreases in size according to some well-founded
measure. Recall, that in this thesis the measure of choice is the subterm relation. Specifically,
when the function representing the first part calls the other with some Ea, we always enforce
Ea to be a subterm of the original argument term Ec, Similarly, when the second function calls
the first with argument Ec, Ec must be smaller than or equal to the initial argument Ea. This
termination order is expressed formally as (Ec Ea). Note that there is an important difference
between a termination order which expresses simultaneous induction [Dl Dr] as in the proof of
the diamond Lemma 4.6, for example, and the one for mutual induction.

Proof: of Lemma 4.12

• termination order is a subterm order on (Ec,Ea)

• using context schema "SOME T : tp. BLOCK x : atm T, u : term T"

Figure 4.8 shows the formal proof. D

We conclude this subsection with a final remark about applying the induction hypothesis un-
der a local extension of the parameter context. In the formalization of the reflexivity Lemma 3.4
for parallel reduction, we extend the regular world (or formally the parameter context) by two
new parameters before we apply the induction hypothesis. First, we assumed that x is a term

of type rTi"1, and second that it reduces in parallel to itself: x => x. After appealing to
the induction hypothesis, or functionally speaking, after calling the function refl recursively
we obtained a new derivation P xu, which had to be abstracted to the correct context. Equa-
tion (4.1) provided us with the correct insight, that a hypothetical judgment is being represented
as function type in LF.

"i

u
l

X =£> X

V

e' ' -U e' =IIa;:termrTi"\nu:a; =^> x.{E'x) =U {E' x)

In the formalization of the embedding Lemma 4.11, we only used one of the two parameters
"x : atm T\,y : term Ti" to conclude that UE' : term Ti ->■ term T2". If we had not omitted x,

93

94 4.3. OVERVIEW OF THIS THESIS

fun embedding" (eapp Ec Ea) =
let

val Ei = embeddingc Ec

val E-2 = embedding" E"
in

app E\ E2
end

and embeddingc (elam (\x : atm T\. Ec x)) =
let

new x : atm T\, y : term Ti
val E' y = embedding0 ((Xx : atm 7\. £r a-) x)

in
lam E'

end
I embedding' (eca E") =

let
val E' = embedding" E"

in
E'

end

Figure 4.8: Formal proof of the embedding Lemma 4.11 for parallel reduction

E' would have the type "atm T\ -» term T\ -> term T2" and consequently it is impossible to
apply lam to E' in order to close the proof branch. But note: By typing reasons we can infer
from the signature that it is impossible that E' ever depends on x. Therefore, we can strengthen
the type of E' by omitting "atm Ti". On the other hand if E' contained an occurrence of a;, x
would surely escape its scope, and destroy the adequacy of encoding for terms.

How can we mechanize the decision when to omit xl The answer to this question requires
a careful analysis of the signature: It follows by inspection that "term" and "atm" are defined
entirely independent from each other, i.e. no object of type atm T for any arbitrary T can
contain an object of type term T", and vice versa. We say that a type family a<i depends on
another type family ai, if objects of a,\ can be subterms of objects in 0,2, or — synonymously
— a\ is subordinate to 0,2. This relation on type families is called dependency or subordination
relation in the literature and has been introduced by Rohwedder [Roh96] and thoroughly studied
by Virga [Vir99]. In order not to clutter the presentation of the meta-logic, we postpone the
issue of subordination until Section 6.2.2.

4.3 Overview Of This Thesis

A meta-logical framework serves a number of important purposes: First, it allows system devel-
opers to formalize their designs and cast them into a machine interpretable language. Second,
it provides a language to express properties about these designs, and third it implements the
necessary technology to verify these properties.

In this work, we have committed to the logical framework LF [HHP93] as representation
language. We believe that it is currently the best representation language for our work since
we are mainly interested in formal systems, such as programming languages, logics, and type

94

CHAPTER 4. META-LOGICAL FRAMEWORKS 95

systems. What makes LF the framework of choice is, that it permits elegant and adequate
encodings of deductive systems using higher-order representation techniques and dependent
types. Judgments are represented as types and deductions as objects.

One of the main contributions of this thesis to extend LF to a meta-logical framework. We
observe, that the majority of properties about programming languages and logics are proven by
induction, in particular all the properties in the previous chapter. The goal of this work is the
design of the meta-logic .M^ that can formalize the meta-theory of deductive systems.

Finally, we develop tools for automated reasoning in this thesis. Designing, developing,
implementing, enhancing, and verifying the design of formal systems is a very tedious and time
intensive endeavor. In order for a meta-logical framework to be a useful tool, it must support
and automate the user's task.

More concretely, in this thesis we develop a two-layer meta-logical framework. Based on LF
we develop a meta-logic M.\ in Chapter 5 that is expressive enough to formalize interesting
properties about programming languages, logics and type system. It is an intuitionistic logic,
that defines a language of formulas useful to formalize properties, and a language of proof terms,
witnessing the derivability of a property. What distinguishes M\ from other logics is the ability
over higher-order encodings of deductive system relying on the regular world assumption.

Unlike standard inductive theorem provers that rely on the closed world assumption, M.^
allows dynamic but regular extensions of the world. Under the closed world assumption the set
of constructors for a particular inductively defined datatype is statically fixed a priori. However
under the regular closed world assumption it can be dynamically extended by new constructors
during a proof.

The regular world assumption is sound, because from the property of LF that canonical
form are inductively defined, we can infer that any recursive function that is valid in M.^ is
a realizer. For examples refl, subst, dia, strip, conf, and cr are all derivable in M%, and
they are realizers. In order to make the soundness argument formal, we specify an operational
semantics for M^ in Chapter 6, and in Chapter 7 we show that each function derivable in M%
is total.

We also present some automated deduction algorithms in Chapter 8 that have been im-
plemented in the Twelf system. In fact Twelf contains a working meta-theorem prover
(http: //www. twelf . org) that can prove all the theorems we have shown in the previous sec-
tions and chapters. The theorem prover works mostly automatic; all that is required is the
proper formulation of the induction hypothesis, a termination order, and a number which limits
the search space when Twelf is constructing a witness object to close a proof subgoal.

. Twelf has been used in many experiments. In logic for example, Twelf has been successfully
applied to derive the cut-elimination results for full-first order intuitionistic and full first-order
classical logic [Pfe95]. In logic programming, it has been used to show that the fragment of
hereditary Harrop formulas implemented in A-Prolog [NM88], proof search for uniform deriva-
tions and resolution are equivalent. It also derived the same property for the Horn fragment
of predicate logic. In the area of functional programming, Twelf was used to show that the
operational semantics of Mini-ML, an ML dialect without exceptions, references and modules,
preserves types. In addition, it derived a completeness result for compiling Mini-ML programs
into a continuation based transition machine CPM [FSDF93]. Most proofs could be found in a
few seconds, for other some Twelf needed more time.

95

96 4.4. RELATED WORK

4.4 Related Work

In the last few decades it has been realized that type theory is an appropriate formalism for
the representation of propositions and proofs. After the discovery of the Curry-Howard isomor-
phism [How80], it has become common practice to represent proposition as types, and express
derivability by the existence of objects. In particular, it guarantees that propositional natural
deduction derivations [Pra65] can be represented as A-terms in the simply-typed A-calculus.

Thereafter many type theories were developed, arguably the most influential being Martin-
Lof's type theory [ML80]. Most importantly, it demonstrated how dependent types and an
equality relation can be used to adequately represent judgments and derivations in a formal
framework. Martin-Löf's type theory eventually led to the development of the NuPRL system
[C+86], and it is implemented in ALF [Mag95].

There has been a whole series of different systems, following this tradition, among others the
Isabelle system [Pau94] based on the simply-typed A-calculus, the Coq system [DFH+93], which
is based on the calculus of constructions [CH88], and the Lego system [LP92], which is based on
a refined version of the calculus of constructions. A more detailed discussion about these these
systems and logical frameworks in general can be found in [Pfe99].

All these systems are very similar in nature. One logical framework makes use of polymor-
phism, the other of type constructors. Many of these systems provide the facilities to reason by
induction. But in all cases, the underlying assumption is that the world is closed. Consequently,
higher-order encodings as we use them in this thesis are not directly expressible in any of these
systems, and therefore, none of the systems can express proofs as elegantly as we have presented
them in this chapter. '

In order to rectify this inefficiency, many of the systems have introduced inductive datatypes
to which induction principles are associated. In general, it has been accepted that the negativity
condition associated with the inductively defined datatypes (as shown in Section 4.1) is unavoid-
able. Therefore higher-order representation techniques have hardly been used, and alternative
first-order encodings have been chosen. A common way to represent variables for example is the
use of de Bruijn indices or integers.

The main drawback of first-order representation techniques is that they are not very elegant.
They do not exploit the type theory in order to define, represent, and execute substitutions,
instead, everything that has to do with substitutions must be explicitly encoded and proven
correct. One can think of higher-order representations as alive since they can change their
shape due to internal /^-reductions, whereas first-order representations are dead, since every
reduction operation must be defined outside the logical framework1.

This way, the original calculus of construction [CH88] has been extended to the inductive
calculus of construction [PM93] which is now used as the formal basis for Coq, and Isabelle,
Lego, and ALF all allow inductive definition given that the positivity condition is satisfied.

On the other hand, the LF type theory does not contain a concept of inductive datatypes.
As already discussed, the recursive functions space implicitly associated with with the elimina-
tion rule of inductive definitions is inherently incompatible with the parametric function space
provided by LF (see Section 2.6), and the Elf project [Pfe89] has taken the stand for higher-order
representation techniques and against inductive datatypes. LF is a very elegant tool to represent
deductive systems, but it lacks a general theory to represent meta-theory adequately.

'This analogy is due to Henk Barendregt

96

CHAPTER 4. META-LOGICAL FRAMEWORKS 97

Even though Elf does not provide a recursive function space, its operational semantics im-
plicitly defines recursive relations. Specifically, recursive functions which lie in the Il2-fragment
can be encoded in Elf as relations [Pfe89]. Each relation relates the universally quantified as-
sumptions (read as input arguments) to the existentially quantified assumptions (read as output
arguments). The relation is representable as LF-signature, and executable via a logic program-
ming interpretation. As example we present an encoding of Lemma 3.5 as a recursive function
which maps two derivations V :: e —^ e' and £ :: e' —-> e" to a derivation V :: e —-t e".
The function is being represented as relation

trans rVx
n rV2

n rVn

which is encoded as type family. The first two arguments must be interpreted as input arguments,
and the last as output argument. We omit that E, E', and E" are also treated as input
arguments, since also the Elf type reconstruction algorithm infers this information itself.

trans

transrid
transrstep

{E -A E') -> (£' -A E") -> (E -A E") -> type

trans rid D2 D2

trans (rstep D[D") D2 (rstep D[P)
«- trans D'{ D2 P

Obviously, from the point of view of LF, this is not the encoding of a function, it is a sequence
of constant declarations! The semantics of ordinary parametric functions, given by the ß- and
77-rule, is not enough to establish an operational semantics of a function represented this way.
Therefore, LF-signatures have been equipped with a logic programming interpretation, which
assigns an operational meaning to -» and II [Pfe89] that interprets each declaration in the
signature as applicable if the head is unifiable. This way, a query of the form "trans rid rid P"
can be executed, and the value being returned is the constant "rid" bound to the variable P.
The reader is invited to consult [PfeOO] for a large collection of more examples.

Because of this external interpretation of a signature as a program, recursive functions can
represented in LF. But do these declarations necessarily represent proofs? The answer is clearly
no! To represent a proof the recursive functions must be total, i.e. their evaluation will always
make progress and eventually terminate. But this property is not enforced, neither by the type
system of LF nor by the definition of the operational semantics itself. As a matter of fact, it is
very easy to write non-terminating functions. Adding

infinite : trans D\ D2 P
<- trans D\ D2 P

as first object constant declaration to the LF signature, will cause the evaluation to loop. Sim-
ilarly, omitting the rule rid from the signature will force the operational semantics to get stuck
when executing "trans rid rid P", and the value of P cannot be determined.

In order to determine that a type family represents a proof one has to employ an external
check for totality, a procedure to which we refer as schema-checker. Early attempts have been
made to devise an efficient and reliable schema-checking algorithm by Rohwedder [Roh96]. The
formal conditions for termination (see Section 7.2) and coverage (see Section 7.3) can be used
to devise an appropriate schema-checking algorithm.

It is inherently difficult to extend logical frameworks directly with a parametric function space
by a recursive function space in a way that both function spaces can coexist. We only know of

97

98 4.4. RELATED WORK

one successful attempt which goes back to Schürmann, Despeyroux, and Pfenning [DPS97]: the
ü-calculus — a conservative extension of the simply-typed A-calculus. This work introduces a
new type OA that reads as the type of all closed objects of type A. Using the modal operator
and the parametric function arrow ->, the recursive function space Ai =4> A2 is defined in the
following way.

Ai=*A2 = OAi -» A2

The ü-calculus also provides iteration and case operators that provide function definition by
case analysis (over any closed possibly functional object). Specifically, a recursive functions /
mapping natural numbers to natural numbers has either type ünat —>• nat or type Dnat —>■ ünat,
depending if the result of an application of / should be used as argument to another recursive
function or not.

The D-calculus is a very elegant solution to the problem of having a recursive and parametric
function space coexist in one logical framework but it has two severe restrictions, which make
it an unsuitable candidate for a meta-logical framework: First, it requires that arguments to
recursive functions are always closed, which excludes the representation of the proof reflexivity
Lemma 3.4 for parallel reduction as far as we know. Second, it is only defined for the simply-
typed setting. Therefore, it is by far not general enough to be used as a meta-logical framework.
The second restriction has been partially addressed in the thesis of Leleu [Lel98], where he
develops an extension of the ü-calculus to also include dependent types. But the first restriction
remains, and it is not at all clear of how to extend it to also reflect parameter contexts and allow
reasoning about open terms.

A more general approach has been taken by Miller and McDowell with their system FOXAIN.
FOXA1N is a meta-logic based on an intuitionistic first-order logic extended by natural number
induction and definitional reflection [SH93b]. This meta-logic is very general, it is so general
that it supports the representation of various logical frameworks, for example the intuitionistic
and linear framework of hereditary Harrop formulas [McD97]. The embedded logical frameworks
are used to represent deductive systems. In [MM97], McDowell discusses the formalization of
the type preservation proof for Mini-ML.

FOXAW is similar to M% because it explicitly separates the meta-logic from the logical
framework, but on the other hand, it is quite different: The only induction principle underlying
FOXA1N is natural number induction. In particular, every structural inductive argument must
be mapped onto natural numbers which puts additional strains on the formulation of meta-
theorems. A second drawback of FOXA1^ is the treatment of parameter contexts. The logic is
not specific enough to treat parameter contexts as special entities. To the contrary, parameter
contexts and hypothesis must be explicitly represented as lists or as functions as must the
regularity condition.

In addition, FOXAN is an intuitionistic logic, without proof terms. Contrary to our approach
where we show soundness of our meta-logic by guaranteeing the proof terms are total functions,
McDowell uses a purely logical argument. He shows that FOAAA enjoys the cut-elimination
property. Naturally, cut-elimination implies consistency. Considering how complicated the orig-
inal cut-elimination proof already is [MMOO], the soundness argument is the major impediment
when generalizing FOXAIN,s natural number induction principle to full structural induction.

FOXA1N,s ability to represent other logical frameworks raises immediately two questions.
First, which other logical frameworks are there, and are they interesting? And second, how well
can M% adopt to these new logical frameworks. The answer to the first question is yes, there

98

CHAPTER 4. META-LOGICAL FRAMEWORKS 99

are many important logical frameworks, and the answer to the second second question will be
postponed until Section 9.1.2.

The interested reader might wonder if it is possible to develop the meta-logic in M.% using
a proof assistant, such as NuPRL or Coq. The formal development of the meta-logic requires
a sound formalization of LF including congruence rules, and much of its meta-theory; it will
require proofs of many properties such as substitution lemmas, the canonical form theorem, and
many others. In addition, one had to formalize unification and subordination, and derive their
necessary properties. We predict, that the proof search engines of the proof assistants will not
be efficient enough to perform the search for derivations inside the deductive systems since the
LF substitution lemmas and canonical form lemmas will be explicitly and repeatedly applied.
In our system, we can exploit the fact that terms are alive, they normalize to their canonical
form by themselves. However, for traditional theorem provers terms are dead, which means that
it is the provers responsibility to return a result in canonical form.

In summary, we believe the work carried out in this thesis cannot be developed in other proof
assistant without spending a significant amount of time and energy. Even if it were possible,
one cannot expect a working theorem prover for free as result of the formal development.

The theorem prover implemented in Twelf that we present in this thesis in Chapter 8 works by
searching for realizers for a given formula in M\. These realizers are recursive functions, which
can be executed, and they compute witness objects for existential quantifies from instantiations
of universal ones. In this sense, Twelf is program synthesis tool [Kre98], that generates correct
programs in a not yet well explored programming language whose datatype declarations are
written as LF signatures.

4.5 Summary

In this chapter, we have demonstrated of how to formalize meta-proofs and meta-theorems in a
meta-logical framework leading up to an informal description of the meta-logic M. \. Conceptu-
ally, M~2 lies on a different and separate level above the logical framework LF. In particular, it
encompasses universal and existential quantification, and conjunction. This is sufficient because
the meta logic does not provide any other atomic constants or propositions other than truth.
The meta-logic provides a proof term calculus, where each proof term corresponds to a total
recursive function. Totality is required in order to guarantee soundness, i.e. upon instantiation
of its arguments, the function must terminate and return with an answer.

99

100 4.5. SUMMARY

100

Chapter 5

The Meta-logic M$

5.1 Introduction

The design cycle of programming languages, compilers, and logics is long, tedious, and error-
prone. In particular, when extending a programming language by new constructs, one has to
be very careful not to render the entire system design unsound. Even worse, an unsoundness
occurring in a programming language is sometimes very difficult to detect by testing, sometimes
it takes years, and very often it is extremely difficult to rectify since it involves a change in the
language design.

The earlier mistakes in the development of a programming language are caught, the better
the final result is. During the early design stages, adjustments to a language need not to be
local, they might and often will be global. In general, it is impossible to remove all flaws from
a programming language already at the drawing board, but experience has shown, that many
flaws could be avoided by checking the design against certain a-priori defined specifications, such
as type soundness, progress, and others.

Consider for example the untyped A-calculus, a very simple functional programming lan-
guage, from Chapter 2. From [CR36] we learned that the diamond lemma and the Church-Rosser
theorem holds for this language. What about extending it to the simply-typed case? All we had
to do is to edit the sequence of theorems, by indexing all occurrences of "term" by a type. Next,
we refined it to the polymorphic A-calculus, and again we had to slightly generalize the formu-
lation of the lemmas, this time by extending the context Schemas (for example Lemma 4.10).
This example shows of how we envision users working with our tool. It serves the incremental
development of programming languages and their theory while offering sophisticated verification
procedures.

In this chapter however, we begin with a formal presentation of the meta-logic which is at
the very heart of this thesis. Its purpose is to express specifications about deductive systems.
We develop an appropriate proof system based on the sequent calculus, for which we develop an
automated proof search procedure in Chapter 8. The meta-logic is called A-fJ and it supersedes
an earlier versions that were published for example in [Sch95, SP98]. Unlike .A4 2 that relies on
the closed world assumption, M% relies on the regular world assumption.

This chapter is organized in the following way. In Section 5.2 we introduce a notion of
substitution for LF (see Section 2.4) since we will use substitutions from early on, and they
will occur in different shapes over and over in this chapter. Using the notion of substitution

101

102 5.2. PRELIMINARIES

we start with the presentation of the logic, its syntax and semantics in Section 5.3, followed
by a formal inference system, based on extensions to the sequent calculus in Section 5.4. In
Section 5.5 we endow the inference rule system with proof terms, constructed in such a way that
they can be used to represent (non-inductive) meta-proofs. In Section 5.6 we extend the proof
term calculus by constructs for recursion, which allow the formalization of meta-proofs carried
out via induction and we add lemmas in Section 5.7. In Section 5.8 we conclude this chapter,
and assess the results.

5.2 Preliminaries

Variables and substitutions are two closely related concepts. In fact, in Chapter 2 we have used
substitutions, for example, for the definition of the /3-rule for the untyped, the simply-typed,
and even the dependently typed A-calculus. Be it in a formal development, or in a theorem
prover implementation, or even in the design of a programming language or logic, the treatment
of variables is very difficult to get right. Since the use of higher-order abstract syntax makes
heavy use of the variable concept of the logical framework, variables and substitutions are the
backbone of this development and hence deserve extremely careful attention. Specifically, LF
substitutions are defined as a list of object/variable pairs M/x where x is the variable to be
instantiated, and M an object which is well-defined in some context T.

Substitutions: a ::= • | a, M/x

In this work we follow standard practice, and allow only valid substitutions to be applied to
valid terms. Because contexts contain explicit type information, validity can be easily expressed
as a static property of substitutions.

Judgment

Valid substitutions: Y2 h a : Y\

We say, that "a substitution a goes from Y\ to ly, which means that — when applied — it
substitutes objects valid in Y2 for variables declared in Y\. We refer to Ti as the domain of the
substitution, and to Y2 as the co-domain.

Rules

r2 h M : A[a] Y2 \- a : Tj
subempty subcons

Th-:- T2\-(T1M/x:Ti,x:A

Note that M has type A[a] in the first premiss of rule subcons, where A[a] is the type one
obtains from A by applying the substitution a. Without going into detail of how substitution
application is defined for LF, we always assume that substitutions can be applied to LF types,
LF objects, or LF kinds if they are valid in the domain of the substitution, a can be applied to
A, because Y2 \- o : Y\ and Y\\- A: type.

A similar comment holds for the composition of substitutions. A substitution o\ can only
be composed with a2 if CTI'S co-domain and a2s domain coincide. Formally this is expressed by
Y$ \- a2 : Y2 and Y2 h o\ :Y\. Substitutions composition is written as Yj,^ o\o a2 : Y\.

102

CHAPTER 5. THE META-LOGIC Mt 103 l2

Definition 5.1 (Composition of substitutions)

. • : • O (72 = CT2

{oi,M/x)oo2 = (CTI oa2),M[cr2]/a;

It is an easy consequence from the substitution lemmas for LF [HHP93], that the composition
of two valid substitutions is valid.

Lemma 5.2 (Composition of substitutions)

IfVl::Y2hal:Yl

and X>2 :: T3 h (72 : T2

then Tz h a\ o o2 '■ T\

Proof: by structural induction on V\. D

This concludes the section on preliminary concepts and we continue with the presentation
of the logic M2 where substitutions are needed at many different occasions.

5.3 The Logic

We begin with the discussion of the logic M2, its syntax, and its semantics. The syntax
of formulas is more complicated than in other logics, because formulas also describe partial
extensions of the current world. At the end of this section we define a formal semantics for this
logic.

5.3.1 Syntax

We introduce the syntax of M2 in three steps. First formally define what context Schemas
are. Second we motivate two different variable concepts. One kind of variables range over
assumptions, i.e. LF types, and the other kind of variables ranges over parameter blocks. Third,
we characterize formulas.

Context Schemas

In the formulation of each theorem, we explicitly require that there is a context schema given,
which describes the regular extensions of the world. In Section 4.2.3, we have encountered an
example, where valid extensions to the world can only be described by more than one block
schema. Context Schemas are defined by a labeled list of block Schemas, and each block schema
has two components, a SOME-component, and a BLOCK-component, where the BLOCK-
component defines the form of a parameter block, and the SOME-component quantifies over
free variable occurrences in this block. Block Schemas are always labeled. Context Schemas are
an integral part of any formula.

Context form: C
Block schema: B
Context Schemas: S

:= -\C,x:A
:= SOME Ci. BLOCK C2

:= -\S,BL

Context forms are LF contexts, they enjoy all substitution and a-conversion properties as
regular LF contexts do. We have given them a different name and denote them with a different
letter C in order to emphasize that they are blueprints for context blocks.

103

104 5.3. THE LOGIC

Variable concepts

In traditional intuitionistic or classical logic, when we write Vx.3y.P(x.y), we typically do not
specify the domain of the two variables x and y. If this formula is true, then independently of
what x is bound to, it is certain that there exists y which makes P(x, y) true.

For our purposes on the other hand, we think of x and y as LF-objects, representing derivation
of an encoded deductive system. Therefore, x and y range over objects of a certain type; we
have demonstrated this already in Chapter 3, when we developed the different formalizations of
theorems in the meta-logic. Consider for example the formalization of the reflexivity Lemma 4.3
for parallel reduction. The colon ":" indicates that T, E. and D range over LF-objects.

D(SOME T : tp. BLOCK x : term T, u : x =

VT : tp. V£ : term T.3D : E =U E.T

x)L.

Note, that, in this formalization T and E are not standard LF variables declarations as described
in Section 2.4. There is a new property attached to these variables which is not available in LF
at all: In order to reason by induction, we can analyze the different forms of T and E.

Nevertheless, since we always keep the LF level and the Alj" level entirely separate, we
continue to write x : A for the assumption that x is of type A. and we keep in mind that we can
analyze x on a case by case basis. From a logical point of view, we call x : A an assumption.

The regular world assumption introduces a new level of complexity. Recall that the regular
world assumption allows dynamic but regular extensions of the LF signature. A recursive func-
tion, as we have seen in the previous chapter can extend the current world by new constructors.
Extensions of the world must always match the abstract description of the world through context
Schemas.

In addition to the standard variable concept, we need a notion of variables that range over
parameter blocks. We motivate these new variables using the reflexivity Lemma 4.3. After
analyzing the cases on E, we had to consider the one case that E in fact refers to a parameter
x in an extension of the current world <&. x is a variable, it simply ranges over any parameter.
Recall that the context schema states that

(SOME T : tp. BLOCK x : term T,v, : x =^ x ,L

which means, that any x in $ is always accompanied by u. Thus, u ranges over the second
parameter in a parameter block. Since we need to reason abstractly about parameter blocks, we
refer to x and u collectively as variable block. In full generality, variable blocks consist of many

parameter variables. We write p = (x : term T.u:x => x) for variable blocks.

Variable blocks: p ::= • \ p,x: A

Variable blocks are typically labeled as described in Section 4.2.3, and these labels are written
in exponent notation. Consequently, variable blocks p ranging over parameter blocks labeled
with L are written as pL. In this setting, regular world extensions $ can be defined as a list of
labeled variable blocks. As example consider the following extension of the world that is clearly

an instance of the context schema:

$ = (xj_: term rrn, u_: xj_ => xj)L, ...,(£„: term rrn, w„ : x^ =3- Xn)L

104

CHAPTER 5. THE META-LOGIC A4+ 105

Variable blocks and regular world extensions enjoy the standard properties, such as sub-
stitution, weakening, contraction, and limited exchange [HHP93]. a-convertibility of variable
blocks p\ =a p2 is decidable and follows from a simple generalization of convertibility of types.
Formally, variable blocks are simply lists of parameter binding variables together with their
types.

Formulas

Given the two different variable concepts, the formula level must provide two quantifiers, binding
each of the variables. In M.% we use the standard universal quantifier to quantify over LF objects
as used in the formula for the reflexivity lemma.

\/E : term T.3D : E =^ E.T

The other quantifier ranges over variable blocks p. We motivate this new quantifier by further
examples. Consider again the standard extension of the current world as often assumed in the
previous chapter.

$ = (£i_: term rTin,u1: x± =^ xi)L,..., (xn : term rrn'1,uR: Xn =^ £n)L

In the reflexivity Lemma 4.3 for parallel reduction we must analyze cases over E : term T. That
means we have to consider a variable block p ranging over any parameter block of label L. In
this case, we must show that forall types T, and for variable blocks ranging over parameter
blocks in $ there exists a D of appropriate type. We ues quantification over variable blocks of
label L using the II-quantifier to express this formula.

VT: tp.r%: termT,u:x =^> x)L.3D:x =U> x. T

A formula in .Mj" is built from two parts. The first part describes the form of possible
extensions of the world. It is expressed by the context schema. Informally, the reflexivity
Lemma 3.4 states:

Consider the situation where a list of the following assumptions is present

x\ :: term T\, U\ :: x\ => X\,... ,xn :: term Tn,un :: xn =$> xn

Then for any well-typed term e, there exists a derivation of e => e.

The context schema formalizes the statement about the list of assumptions whereas a formula
expresses the property to be shown.

Formulas are defined in terms of universal and existential quantifiers ranging assumptions and
variable blocks, conjunction to represent mutual inductive theorems, and truth. For this work,
we are particularly interested in formulas that lie in the n2-fragment, since it is this fragment
for which we develop automated deduction algorithms that are described in Chapter 8. The
well-formedness condition for formulas is discussed in Section 5.4.3.

General formulas: G ::= OS.F
Formulas: F ::= Vz : A. F | UpL. F | 3x : A. F \ Fx A F2 \ T

105

106 5.3. THE LOGIC

It is possible to separate the two parts of a general formula, and to leave the definition of the
context schema implicit, similarly as we leave the definition of the signature implicit. However
for clarity we carry the context schema as part of the formula in this work.

As a reminder, here are some examples of meta-theorems expressible in this logic. The first
example is the diamond lemma for parallel reduction.

Example 5.3 (Diamond lemma) (see Lemma 4.6)

D(SOME T : tp. BLOCK x : term T, u : x =U x.)L

VT : tp. VE : term T. WE1 : term T. V£r : term T.

VD' : E =^ E'.VDr :E=UEr.

3E' : term T. 3R,' : E1 =U E'. 3Rr : Er =U E'. T

The second example is the reflexivity lemma for the polymorphic A-calculus. Note, that here
the context schema contains two block Schemas.

Example 5.4 (Reflexivity lemma for the polymorphic A-calculus) (see Lemma 4.10)

D(SOME T : tp. BLOCK x : term T,u : x =U x)Ll | (BLOCK a : tp)/j2.

VT : tp. ME : term T.3D : E =U E.T

The logic is very simple, and simultaneously very strong because it inherits the expressiveness
from the underlying logical framework LF. In particular, there are no other constants defined
besides truth. There is no equality. There is no falsehood. There is no disjunction. On the one
hand this sounds like a severe restriction, on the other it may not be. For specific instances,
it is possible to define disjunction in LF and to make it accessible to M.^ • A more concise
investigation of other useful connectives for Ai2 is left to future work.

5.3.2 Semantics

In this subsection we extrapolate a suitable semantics for A42 from the examples presented in
Chapter 3. The semantic is straightforward and intuitive. Before we present the meaning of
a general formula G in M.2 in detail, we first define an interpretation of the new D-operator,
which prompts the definition of an interpretation of context Schemas.

A closer look on context forms C reveals that C7:s are defined structurally in a way very
similar to LF contexts, namely as a list of declarations. In order to judge if a given context
satisfies a context schema, we must check that every block is an instantiation of a block schema
— block by block.

Consider for example a regular extension of the world, that we denoted by <3> = $', p1'
where p is the most recent block introduced in the world. This block is labeled with L. Ob-
viously, for $ to be be valid, $' must be valid and p must be an instance of the block schema
SOME C\. BLOCK C2. In other words, there must be an instantiation for the variables in C\
from $', and p must match C'2 where C'2 is the result of instantiating all variables from C\ in C<i-
In the first case we speak of a SOME-instantiation, and in the second of a BLOCK-construction
which includes an explicit a-convcrsion step to ensure that the naming of parameters is unique.

BLOCK-construction creates the new parameter context by traversing C from left to right
instead of right to left as suggested by the syntactical definition of C. We write [a]C for the
instantiation of context form C followed by an a-conversion step, a is a substitution.

106

CHAPTER 5. THE META-LOGIC Mt 107

The interpretation of a block schema is defined in terms of SOME-instantiations and
BLOCK-constructions. It is a set of all parameter blocks, which are the result of BLOCK-
construction, after some appropriate SOME-instantiation.

Definition 5.5 (Interpretation of a block schema)
For all a, s.t. $ h a : d, it holds that $ h [a]C2 G [SOME Cx. BLOCK C2]

We say that $ lies in the interpretation of S, if any parameter block of $ is in the interpreta-
tion of some block schema defined by S. Obviously, the empty parameter context is an element
of the interpretation of any context schema.

Definition 5.6 (Interpretation of context Schemas)

IS] := {■} U {$,pL | $ G [5] and there exists a BL E S, s.t $ h p G [B}}

On the basis of the interpretation of context Schemas we can now define the semantics
of formulas. A general formula is semantically valid, if its body is valid in any parameter
context compatible with the context schema. Universally quantified formulas are valid, if for all
instantiations of the assumption variable, the body of the formula is valid. Similarly for variable
block quantification: A II-formula is semantically valid if and only if its body is semantically
valid after instantiating the variable block with a parameter block from the context (carrying
the same label). An existentially quantified variable is semantically valid if there exists a term
M which makes the body of the formula valid. The conjunctions of two formulas is valid if each
of the conjuncts is, and last but not least, T is always semantically valid.

Definition 5.7 (Meaning of formulas)

\=ns.F iff $ ^=F for all $ G IS}
$ |= Vx : A. F iff $ \= F[M/x] for all M, s.t. $hM:i

$ \=ILpL.F iff d> H F[p'/p] for all p'L G <&, s.t. $ h p' =
$ \=3x:A.F iff $ |= F[M/x] for some M, s.t. $hil:i

$ f= Fi A.F2 iff <E> |= Fi and $ t= F2

$^T

The goal of this thesis is to develop an automated meta-theorem prover which can prove
meta-theorems about deductive systems. Unfortunately, the semantics of the meta-logic does
not provide enough structure for a construction of a theorem-prover for M% ■ Thus we develop
a formal proof theory for M^ in the remainder of this chapter. The proof system is based on an
extension of intuitionistic logic [Gal93], as the definition of the semantics of M.^ already suggests.
Given any instantiation of the universal quantifiers the proof determines witness objects for the
existential quantifiers. That the derivability in this proof theory implies semantic validity is
shown in Chapter 7. The attentive reader might recall that meta-proofs are formalized by
recursive functions for which we have already given many examples in Chapter 4.

The development of the formal proof system is rather complex and quite challenging. In order
to facilitate the presentation, we begin with the presentation of a set of inference rules, which
extends the standard formalization of the sequent calculus for intuitionistic logic by variable
blocks and the appropriate quantifier in Section 5.4. We then endow the calculus with proof
terms in Section 5.5, add two operators to permit definition by cases and recursion in Section 5.6.
Finally we add another operator to express lemma application in Section 5.7.

107

108 5.4. THE PROOF SYSTEM

5.4 The Proof System

The proof system for A4^ not only contains a set of inference rules in order to define provability,
but it also contains a set of rules which characterize well-formed context schemes and well-formed
formidas. All three inference rule systems rely on a proper treatment of assumptions. Recall that
there are assumption variables, which correspond to LF objects, and there are variable blocks
which range over entire parameter blocks. In this section we first discuss these assumption
contexts in detail, in Section 5.4.1 we present then the inference system for context Schemas
in Section 5.4.2, the inference system for well-formed formulas in Section 5.4.3, and finally the
inference system which defines provability in the sequent calculus in Section 5.4.4.

5.4.1 Generalized Contexts

Generalized contexts for M.^ are inherently different from the standard LF-contexts T from
Section 2.4, and they extend the notion of context used in previous version M.2 [SP98]. There,
contexts were defined as a list of assumptions (or Eigen variables). It was guaranteed that
under the closed world assumption, all variables declared in such a context stood for closed LF
expressions. Generalized context as defined in this section are much more general because of the
regular world assumption. Recall that we reason about derivations that are "open" in regular
extensions of the world, and therefore, assumptions declared in a generalized context may be
open. Generalized contexts also describe the partial knowledge about the world at any point in
a proof.

One question comes immediately to mind: Why represent all information in one generalized
context? Wouldn't it be better to represent it in two different ones? One context represents
assumptions, the other the current extension of the world? The answer is subtle: All information
about assumptions and the world cannot be separated because of dependencies. Assumptions
might occur in the types of the parameters, as we can see in the example above where x : term T.

And vice versa, parameters can occur in the types of assumptions. E : x =£• x is such an
example. Another example can be found in the proof of the diamond Lemma 4.6: after the first

case analysis the left reduction is represented by Er : x =^ er uncovering a dependency.
Since variable blocks describe properties about the parameter contexts and assumptions live

on an entirely different level, they are conceptually different, one could argue not to worry
about dependencies at all. This argument is wrong, and we make one more observation that
should clarify this question; our notion of generalized context cannot represent invalid parameter
contexts.

Example 5.8 (Invalid parameter context) Consider the simply-typed A-calculus from
above and the following context schema:

(SOME T : tp, E : term T. BLOCK x : term T, u : E =U x)L

The list

(x : term rrn, u : y =£■ x) , (y : term rT~l, v : x => y)J

is not a parameter context, because the two blocks cannot be ordered in any way to respect
dependencies.

108

CHAPTER 5. THE META-LOGIC A4+ 109

By definition a context schema represents all valid parameter contexts, whose parameter blocks
match the BLOCK declaration. Disregarding all dependencies would mean to permit invalid
contexts, and reasoning about invalid contexts can lead to inconsistent results. Therefore we re-
quire that all dependencies of assumption and variable blocks declared in an generalized context
are honored, and so invalid parameter contexts are excluded from our considerations. Com-
mitting to an order of variable blocks and assumption variables does not mean that we have
committed to a particular order of declarations in the parameter context: none of the rules
we introduce below will ever take advantage of this information. Consequently, representing
assumption and variable blocks together in one generalized context only means that there exists
at least one valid parameter context described by the generalized context. We start now with
the formal presentation of generalized contexts.

Generalized Context: ty ::= • | \I/, x : A | \I/, pL

Since ^> — when flattened out — is always a valid LF-context, we can use it also as context
in LF judgments. In the rules below, we use the notation that \l/ h M : A, which means, that
after removing all labels from ^>, the object M has type A in this newly obtained context.
Moreover, our definition of regular worlds <& is already contained in * if * contains nothing else
but variable block declarations.

Generalized contexts are valid if assumptions and block variables are well-typed in the stan-
dard sense. A variable block pL in the generalized context ^,pL is valid, if it is an instance of
a block schema SOME d. BLOCK C2 as defined in Section 5.3.2.

Judgment

Validity of generalized contexts: h Vl> abstract

Note that we omit two important indices from the judgment: I- \I/ abstract is actually indexed
by the signature £ and the context schema S. In pedantic detail, one would write

r-^js ^ abstract

for the validity judgment. But in order not to clutter the presentation and more than necessary,
we omit these two indices. Because of the semantic validity of formulas and general formulas, it
should be quite clear, that S, and S must be assumed constant throughout a proof. A similar
remark holds for all other judgments which we introduce below in this section. Occasionally, we
will remind the reader.

There are three rules which define the generalized contexts. First, the empty context is a
generalized context, second generalized contexts can be extended by valid variable blocks or
valid assumptions. Note that in this rule we use the LF typing judgment where we implicitly
flatten out \I>.

Rules

 vempty
h • abstract

h* abstract (SOME Cx. BLOCK C2)
L e S * h a : Cx

h *, ([a]C2)
L abstract

109

vblock

HO 5.4. THE PROOF SYSTEM

I- * abstract * \- A : type
 :— vass

h *,.r : A abstract

5.4.2 Context Schemas

Context Schemas are abstract descriptions of parameter contexts. A well-formed context schema
consists of several labeled block Schemas, each block schema is closed by itself, i.e. it can-
not rely on any other assumptions but the ones introduced by the block. That means, if
SOME C\. BLOCK C2 is a block schema, CUC2 must form a context.

In this subsection we specify a set of inference rules for well-formed context Schemas. By
inspection of the definition of context Schemas, it becomes immediately evident that this well-
formed judgment is defined in terms of two auxiliary judgment: one judgment for well-formed
block Schemas and one for well-formedness of context forms.

Judgments

Well-formed context Schemas: h S SCHEMA

Well-formed block Schemas: h B BLOCK

Well-formed context, forms: C\ h C2 CTX

The rules defining these three judgments are entirely straightforward. The only thing to
pay attention to is that for context blocks, we first have to check that the SOME-component
is well-formed, and then that the BLOCK-Component is also well-formed. We tacitly assume
that all labels are distinct.

Rules

h S SCHEMA \- B BLOCK

I- • SCHEMA \- S, BL SCHEMA

• h d CTX d \- C2 CTX

h SOME d. BLOCK C2 BLOCK

C] h C2 CTX C\. C2 h A type

Cih-CTX CX\-C2,X:ACTX

Example 5.9 (Well-formed context schema) The context schema from Lemma 4.10 is
well-formed:

h (SOME T : tp. BLOCK x : term T, u : x =±> x)Ll, (BLOCK a : tp)^2 SCHEMA

5.4.3 Formulas

In M2, there are two notions of formulas. First there are "formulas" that express properties,
and second there are "general formulas". General formulas bind one context schema, which
states the form of the extensions of the regular world. In order to judge if a general formula is
well-formed, the inference rules have to ensure that the context schema is well-formed, and that
every quantifier is well-typed.

110

CHAPTER 5. THE META-LOGIC Mt 111

Judgments:

Well-formed general formulas: h G general
Well-formed formulas: $hF formula

The judgment for generalized formulas is indexed by an LF signature, whereas the judgment
for regular formulas is also indexed by a context schema. In addition, assumptions and variable
blocks bound by universal quantifiers may occur anywhere in the body of the formula. Hence,
the judgment for well-formed formulas is defined with respect to an generalized context.

Rules

hE S SCHEMA • hE;5 F formula

hE US. F general
Vctx

*,x : A hE;S F formula *,pL HE;S F formula V,x:A hE.5 F formula
vv : vn : V3

* hE;5 \tx : A. F formula tf hE;5 UpL. F formula * hE;S 3x : A. F formula

^ l~E;5 F\ formula * H-E;5 F\ formula hE.s * abstract
 VA : Vtrue

* rE;s Fi A F2 formula * (-E;5 T formula

In the remainder of this thesis, we drop the subscript E and E; S from these judgments and
rules.

Example 5.10 (Well-formed formula) The formulation of the diamond lemma Lemma 4.6
is well-formed.

h DSOME T : tp. BLOCK x : term T, u : x =i» x.
VT : tp. VE : term T. VEl : term T. VEr : term T.

VDl : E ^ El.VDr : E =U Er.

3E' : term T. 3Rl : El =k E'. 3Rr : Er =U E'. T general

This concludes our presentation of well-formed formulas. We continue with the presentation of
the proof system for M.\ ■

5.4.4 .M+-Calculus

The design of the proof calculus for M.\ is inspired by a sequent calculus for first-order intu-
itionistic logic, but it is at the same time significantly different. It is similar in a sense, that there
are left rules and right rules, and it is different in the sense that there is no cut-rule. In addition
to the standard rules for formulas, there are also rules for general formulas. A particular drastic
change to the original set of left rules is posed by the introduction of new parameters. Intu-
itively, introducing new parameter blocks corresponds in informal reasoning to a hypothetical
argument. If assumptions are introduced in a proof, all reasoning steps are hypothetical until
the newly assumed hypothesis are discharged. This observation will have a drastic impact on
the form of the left rules. We will present the inference system in small steps, in this section,

111

112 5.4. THE PROOF SYSTEM

for example, we only present the basic notion of provability which we endow with proof terms
in Section 5.5, recursion in Section 5.6, and lemmas in Section 5.7. The reader is asked to read
this section very carefully and very attentively in order to capture the essential differences of
M-2 and the standard sequent calculus formulation.

Provability in .M^ is expressed by two judgments h G and $; A h F. The first judgment
is indexed by E, the second by E;5. \I/ is the generalized context, describing all LF level
assumptions and variable blocks in any given state in the proof. A stands for a list of formulas,
representing all meta-assumptions during a proof. Informally, the A is the left hand side of the
sequent symbol k Formally, it is defined as

Meta-assumptions: A ::= -\A.F

and meta-assumptions are well-formed, if they satisfy the following judgment

Judgment

Well-formed m,eta- assumptions: $h A meta

which is defined by the following two rules.

Rules

h * abstract $hA meta $hF formula
 vabstract vmeta
* h • meta *hA,Fmota

Typical examples of formulas, which are represented by A. are for example the induction
hypothesis, and subformulas of the induction hypothesis resulting of partial applications. In
Section 5.5 we will revisit the list of meta-assumptions and assign names to them which arc
simply meta-variable names for the proof term calculus. But for the presentation of pure proof
rules, it is enough to assume A to be a list of formulas.

Judgments

Provability of general formulas: h^ G
Provability of formulas: <!'; A r-£;s F

The two provability judgments are not general enough to present the entire system of infer-
ence rules. As a matter of fact, they are only general enough to presen approximately half of
the system, namely the right rules. The special case of the left rules is discussed below. For the
sake of clarity, we omit index of the H symbol in the judgments for the definition of the rules
below. It can be easily derived from the context.

■;-\-F
generaIR

H ns.F

This is only right rule for general formulas. The other right rules for the provability of formulas
are almost straightforward. *, interpreted as LF-context in the R3 rule, provides all assumptions
about LF objects known at the point of time when the rule is applied in a proof, and M is the
witness object for the existential. Note that A does not change in any of these rules.

112

CHAPTER 5. THE META-LOGIC Mt 113

F £ A
axvar

$;AhF

— : RV — Rn : L_L2 R3
#;Ar-Var:AF ^;A\-IlpL.F V;A\-3x :A.F

*;AhFi *;AhF2
 RA RT

V;At-F1AF2 *;AhT

The rule RV provides information about the existence of LF objects, and this information is
stored in the generalized context. Similarly does the rule Rn provide information about the
form of the parameter context.

Now to the left rules. Differently from the right rules, where the defining formula occurs
in the conclusion to the right of the h symbol, the defining formula for the left rules occurs to
the left, in the assumption list. And typically, there are as many rules as there are connectives.
Applying a left rule in a backwards directed fashion means to extend A by new assumptions,
resulting from manipulating this one formula. For example, if Vz : A. F is this formula in A, we
can use it and for well-typed object M of type A, we can assert the new assumption F[M/x].
In a first attempt, let us define the left rule for V to be:

*HM:A V;A1,Vx:A.F,F[M/x],A2\-F
 LV

V;Ai,Vx:A.F,A2\-F

How would we use this rule in a proof? Consider for example the proof of the reflexivity
Lemma 4.3, and in this proof the case for app. Furthermore, assume that the induction hypoth-
esis is already contained in A:

VT : tp. V£ : term T.3D : E =U E. T e A

Applying the induction hypothesis means to apply the rule LV bottom to top. In the example,
assume that E\ has type Ti, and E2 has type T2, and that all this information is represented
by the generalized context >3/:

* = Ti : tp, T2 : tp, Ex : term Tu E2 : term T2

In the proof, we applied the induction hypothesis twice, once to Ti and E\, and once to T2 and
E2. The LV rule provides exactly this functionality. After the first application, observe how the
assumption list A grows.

AW = VT : tp. VTJ : term T.3D : E =U E. T,

VE:termTi.3D:E =U E. T

Then, after applying it a second time to the newly introduced assumption, we obtain:

A<2> = VT : tp. VE : term T. 3D : E =^4> E. T,

VE:termTi.3D:£

3D: Ex =U Ei.T

VE:termTi.3D:E =±> E.T,

113

114 5.4. THE PROOF SYSTEM

Another application of the induction hypothesis, this time on T2 and E2 yields A^4'.

AW = VT : tp. ME : term T.3D : E =U E. T,

V£:termTi.3£>:£; =U E.T,

3D:El J=> EX.T

\/E : term T2. 3D : E =U E.T,

3D:E2 =U E2.T

Note, that in order to continue the proof, we have to extract the existentially quantified witness
objects from the third and the fifth entry in A^1^ back into the generalized context. In natural
deduction, this is done by the existential elimination rule, that corresponds in the sequent
calculus to the existential left rule:

vf, x : A: A,, 3.-;; : A.FX.FX. A2 h F
 : : : L3

*;A1,].T:AF1,A2hF

\I> has not changed while applying the LV rule, but it does when applying the L3 rule which we
must do twice: The first application extends the generalized context by the (true) assumption

that Ei =U Ei

1>(5) = Ti : tp, T2 : tp. E{ : term T{, E2 : term T2, Px : E\ =U Ex

and the second by the (true) assumption that E2 => E2:

*(6) = Tx : tp, T2 : tp, Ex : term Tx, E2 : term T2,PX : Ex =U EUP2: E2 =U E2

All in all, the proof of the case can be finished by applying R3 with AI = papp P\ P2 followed
by an application of RT.

Unfortunately, the two rules just presented do not apply to the hypothetical reasoning case.
Consider for example the plain case in the proof the reflexivity Lemma 4.3 for parallel reduction:
Before we apply the induction hypothesis, we have to assume the existence of a parameter block

of the form x : term T, u : x =4> x. When are these assumptions discharged? Obviously,
they can only be discharged after the induction hypothesis is applied to all arguments, and
all witness objects are moved into the generalized context. From a formal point of view, this
operation corresponds to several applications of the LV-rule, followed by several applications by
the L3-rules.

Now it becomes difficult. We claim that we have to be very careful when to introduce and
to discharge variable blocks! Just imagine two simultaneously applications to the induction
hypothesis, where the first is hypothetical (that means it must extend the world by a new
variable block), and the other isn't. Which formulas are valid in which world? The problem
reduces to the question of proper scoping of world extensions. In a standard sequent calculus,
the context of assumptions has intuitionistic properties, that means that once an assumption is
introduced it is present in the context of all judgments in the premiss. The situation of world
extensions on the other hand is different. A world is typically extended before an induction
hypothesis is applied, and discharged afterwards. Thus, extensions to the world do not possess
the standard intuitionistic properties.

114

CHAPTER 5. THE META-LOGIC MJ 115

Seemingly, we need to extend the world only for the purpose of induction hypothesis and
lemma- application. Our solution is to introduce a new judgment, that explicitly tracks world
extensions. This judgment is defined exclusively in terms of the left rules since they are the
ones needed for applying an induction hypothesis, precisely LV and L3. While applying the left
rules we do not record changes in * immediately. Instead we collect all information, and add
it to the intuitionistic context only after the last left rule is applied. This judgment entitles
us to reason hypothetically. A special derivation rule which interfaces the standard derivability
judgment with the new judgment extends \I> accordingly. Back to the example of the proof of
the reflexivity Lemma 4.3 for parallel reduction. This time, we consider the "lam"-case. Recall
that we have to show that E = lam (Xx : term T. E' x) reduces to itself. Formally, we have to

construct an LF object of type (lam (Xx : term T. E' x)) ==> (lam (Xx : term T. E'. x)). This
situation is summarized with the following generalized context:

* = T : tp, T' : tp, E' : term T -> term T1

We begin now with a formal appeal to the induction hypothesis. First, we assume the existence
of a new parameter block x : term T,u:x => x. Then we apply LV to T'.

AW = VT:tp.VE:tevmT.3D:E J* E.T,

V£ : term T. 3D : E =U E.T

We then use the LV once again, this time on (E1 x) which has type term T'. Note that from
an algorithmic point of view the type of E' already prompts for an extension of the world.
Otherwise no induction hypothesis is applicable at all.

A(2) = Vr : tp. \/E : term T.3D : E =k- E. T,

ME : term T. 3D : E =U E. T,

3D: (Ex) =i» (E' x).T

And finally we apply L3, and obtain a new assumption: P : (E1 x) =>• (E' x). Clearly, in
order to add P to the generalized context, we have to abstract according to Equation (4.1) on
page 76, and we obtain

#(3) = T : tp, T' : tp, E' : term T ->• term T',

P : Ux : term T. TLu : x =^- x. (E' x) =k- (E x).

Similarly, we abstract the new meta-assumptions in A^2) and obtain

A(3) = VT : tp. VE : term T.3D : E =^> E. T,

n(x : term T:u:x =h x)L.VE : term T. 3D :E=k>E.T,

U(x: term T,u:x =k> x)L.3D : (E'x) =k> (E'x).T

How do we represent the extension of the world in the new to be defined judgment? The
answer is that we simply extend the general context * by the declaration of a new variable block.
But in general this information is not enough to abstract the hypothetical assumptions after
finishing applying the left rules, because there are possibly many variable blocks declared in \I>,
and many of them of them must not be discharged. Which variable blocks must be discharged
and abstracted after a successful application of the left rules is represented by the derivation in
M-2'- abstraction takes place while unraveling the trace of left rules. The left rules are defined
via a new judgment which we call provability of declarations.

115

116 5.4. THE PROOF SYSTEM

Judgment

Provability of declarations: \['; A h $'; A'

The generalized context \I/, and the list of meta-assumptions A on the left carry the same
meaning as in the judgments for provability and general provability above. ^ is used to capture
extensions of the current world. <&' and A' declared left of the h symbol represent a list new
assumptions and new meta-assumptions which are synthesized during the application of the left
rules, and which will be added eventually to the generalized context. Operationally interpreted,
\&' and A' are constructed after all left rules are applied. The judgment can be read as a function:
\I/; A are input variables, and \t;/; A' are output variables. Initially, in the example, before the
induction hypothesis is applied, $> and A have the following form:

tf W = T : tp, T' : tp, E' : term T -> term T

A^ = VT : tp. V£ : term T.3D : E =U E.T

We start now with the application of the induction hypothesis. First, a parameter block is
introduced, and its existence is made visible by a variable block in the generalized context:

<3>(2) = T : tp, T : tp, E' : term T -> term T', (x : term T, u : x =U x)L

A(2) = VT : tp. VE : term T.3D : E =U E.T

Next, the induction hypothesis is applied to T : tp using a new version of the LV-rule, which we
introduce formally below.

#(3) = T : tp, T' : tp, E' : term T -> term T', (x : term T, u : x =U x)L

A(3) = VT : tp.ME : term T.3D : E =U E.T,

V£ : term T. 3D : E =k> E.T,

Another application of the rule LV, this time to E' x (well-typed in vpt5)) yields

<3>(4> = T : tp, T' : tp, E' : term T -> term T', (x : term T,« : x =U x)L

A(4) = VT : tp. \/E : term T.3D : E =U £?. T,

V£ : term T. 3D : £ =i* E.T,

3D: (E' x) =U {E' x).T

which allows us to assume the existence of a P : (£" x) ==> (£" x) well-typed in \I/(4' by rule
L3 (also defined below), and the body of the last formula in A'4) becomes a meta-assumption.

*(5) = T : tp, T' : tp, E' : term T -)■ term T', (3: : term T, u : x =^> J;)
L

P : (£' a) =U (E1 x)

A('5) = VT : tp. VE : term T.3D : E =U E. T,

V£ : term T. 3D : E =U E.T,

3D: (E' x) =4 (E' x).T,
T

116

CHAPTER 5. THE META-LOGIC .M+ 117

The induction hypothesis is now completely applied, and we can begin to unravel the trace of
left rule applications. Unraveling in this sense mean to step back through the call tree while
discharging and abstracting hypothetical parameter blocks. Simultaneously, we construct the
*'; A', extensions of the original generalized context and meta-assumptions list. In the last step,
nothing has been done, so both extensions are empty.

#'(5) = .

A'(5) = •

In the step before that, two assumptions were recorded, one in the generalized context, the other
in A:

*'(4) = P:{E'x)=U (E' x)
A'(4) = T

Note, that \I>(4), *'(4) is a generalized context, and A(4), A'(4) is a meta-assumption list. Another
step before, we applied the LV rule, and thus, we add the newly generated meta-assumption to
the left.

*'(3) = P:(E x) =U (E' x)

A'(3) = 3D: (E' x) =U {E' x).T
T

Note, that we maintain the invariant that A^4), A'(4) is a valid meta-assumption list.

tf/(2) = p:(E'x) =U (E'x)

A'(2) = yE . term T^D.E _L^ Em T>

3D: (E'x) =U {E x).T,
T

The last step in this example is the important step because it demonstrates how to discharge
assumptions by abstracting and internalizing the newly assumed parameter block from the
first application of the parameter introduction rule. Informally, we apply Equation (4.1) to all
assumptions in $'W in order to obtain *'(1), and simply bind the new meta-level assumptions
by II. The result is

#'W = P:Ux: term T.Uu:x =U x. (E' x) =U (E' x)

A'W = U(x : term T,u:x =U> x)L.\/E : term T.3D : E =h E. T,

U(x:termT,u:x =U x)L.3D:(E'x) =U {E x).T,

H(x : term T,u : x =>- x)L.T

and the proof can continue with ty'W, vp't1); A'(1), A'^, that is:

^(1)^/(1) = T : tp, T" : tp, £': term T-> term T'

P : Ux : term T.Uu:x =^> x. (E' x) =h (E' x)

A(i);A/(i) = \JT:tp.VE:termT.3D:E =U E.T

U(x : term T,u : x =U x)L.VE : term T. 3D : E =U E. T,

U{x: term T,u:x =^> x)L.3D:(E'x) =U (E x).T,

H{x : term T,u : x =$■ x)L.T

117

118 5.4. THE PROOF SYSTEM

This concludes our motivational example of how to formalize hypothetical reasoning. The
skeptical user might wonder, why is is necessary to also maintain A'. As a matter of fact, it
is not. But because partially applied lemmas arc always available in a regular intuitionistic
sequent calculus we have decided to also keep them in M2.

What remains to be done, is a formal definition of the rules that we have used in this examine.
We start with the presentation of the interface rule sei which triggers a sequence of left rules, in
a very similar manner as shown in the example above.

;Ah';A' tf, *'; A, A'h F
 sei

$;AhF

The first rule Ldone, is the rule which terminates a sequence of left rules. It is basically the
complementary rule to sei, which can be seen as initiator of a sequence of left rules.

Ldone
<I>; Ah-

The second rule Lnew supports the introduction of new parameters. \I>'; A' are the re-
turning extensions of the generalized context and the meta-assumptions, which are accordingly
abstracted. Tentatively, as a first sketch, we write Up. A to abstract over a variable block.

U-.A-2 = A-2
U(x:Al,p).A2 = Ux:AY.{Up.A2)

Note that this definition omits the underlines below x because the result of abstraction lives in
LF. Our definition of abstraction can be easily generalized to lists of assumptions: UpL. (*'; A').
Note, that this II is not a constructor, neither in LF nor in M2 , it is merely an abbreviation
for a function, that performs the abstraction on the fly. In Section 6.2.2 we refine abstractions
to account only for variables declarations that may occur in the body of A. Declarations which
cannot occur in A should be omitted.

(SOME Ci. BLOCK C2)
L e S * h a : Cx tf V p =Q [a]C2 1>,pL; A I- *'; A'
 _ Lnew

;Ahn/.(';A')

The LV- and the LEE rule generalize the LV rule from above. Note that we must ensure, as
premiss in LV, that M is well-typed, and likewise, as premiss in LIT, that p' is well-typed. In the
former case we use the typing judgments from LF, in the latter, abstract type convertibility for
variable blocks.

*; A h V.r : A. F V h M : A tf; A, F[M/x] h *'; A'
 |_\/

$;Ahf';F[M/4A'

*;Ah TLpL. F p'L G * * h p' =Q p *; A, F[p'/p\ h *'; A'

tt;Ah *';F[P7P],A'

The L3 rule is the only rule which extends the generalized context \&'.

V;A\-3x:A.F V,x : A; A, F h *'; A'

LII

$;Ahj:i,$';F,A'

118

L3

CHAPTER 5. THE META-LOGIC M% 119

Finally, there are to rules which project the left or right proof term from a conjunction.

*;AhFiAF2 *;A,Fih*';A' *;Ar-FaAF2 #; A, F2 h *'; A'
 LAi LA2

This concludes our presentation of the proof system for K\\. On the one hand, the proof system
borrows many ideas and concepts from the sequent calculus for intuitionistic logic, on the other
it is significantly different. In order to accommodate hypothetical reasoning, for example, the
original judgments must be specialized. New parameter blocks are introduced by the rule Lnew
which also abstracts the results of applying the induction hypothesis appropriately. The method
of abstraction is not as straightforward as it may seem from the examples above, we postpone
the detailed discussion until Section 6.2.2.

The remainder of this chapter is organized in three parts. First we add proof terms to .Mj,
which formalize meta-proofs by summarizing entire .M^-derivations and which form the basis
of our soundness argument. Second, we add two rules in order to express case analysis and
recursion in order to generalize the proof term calculus to a calculus for recursive functions and
third we add lemmas to the meta-logic. Recursion and case analysis allow us to encode proofs
"by induction" over higher-order encodings that may violate the positivity condition associated
with standard inductive definitions.

5.5 Proof Term Calculus

In this section, we endow the proof calculus of M.% with proof terms. Proof terms are very concise
representations of derivations in a formal system. As a matter of fact, given a proof term for a
theorem, the original derivation can be unambiguously reconstructed. But this is not the only
advantage of proof terms: In general it is possible to interpret them operationally. Consider the
natural deduction calculus for propositional logic by Gentzen [Gen35, Pra65]. Each derivation
of a formula can be uniquely represented by a simply-typed A-term using the propositions-as-
types principles. This observation goes back Howard [How69] and is commonly known as the
Curry-Howard isomorphism. In this work, we interpret proof terms as recursive function, and
by an argument of realizability interpretation we will eventually infer the soundness of Ai^- By
moving the soundness argument of M.£ form the logical level to the proof term level, we manage
to avoid stating explicit induction principles for higher-order encodings. Instead, we argue that
M.~2 is sound, because it only admits proof terms that guarantee complete case coverage and
well-founded recursion.

We begin with the presentation of a proof term calculus for M^- In Chapter 6 we then define
a type preserving operational semantics for it, and in Chapter 7 we will show that each function
is total, yielding a soundness proof for M^- 'All recursive functions presented in Chapter 4 are
proof terms. For improved readability, so far we have used some syntactic sugar in order to make
proof terms more accessible to the user, and we omitted for example all implicit arguments in
order to simplify the presentation, but in essence, the proof terms we present in this section
have all been already discussed informally. As example, consider the proof of the reflexivity

119

120 5.5. PROOF TERM CALCULUS

Lemma 4.3.
fun refl x = u

| refl (lam (Xx : term T. E' x)) =
let

new x : term T.u:x => x
val P xu = refl (E' x)

in

plam (Xx : term T. Xu : x => .T. P .T «)
end

| refl (app E\ E2) =
let

val Pi = refl E}

val P2 = refl E2

in
papp P! P2

end

In this section we concentrate on proof terms representating the body of each of the cases.
The presentation of proof terms for pattern matching and recursion is postponed until the next
Section 5.6. There are three kinds of proof terms: general proof terms for general provability
judgments h G, proof terms or programs for the right rules expressed by the judgment $; A h F,
and declarations for the left rules, expressed by the provability judgment $;Ah \I>'; A'. General
proof terms are abbreviated with Q, proof terms with P and declarations with D. In order not
confuse provability on the meta-level with typability on the logical framework level, we use € as
the structural symbol in A and between proof terms and formulas.

Judgments

Provability of general formulas: h Q G G
Provability of formulas: $;AhP6F
Provability of declarations: $;AhDef';A'

In the following three subsections, we define proof terms for each of the three judgments.

5.5.1 Provability of General Formulas

There is only one general formula. It is the closure operator, and it binds the context schema in
which the formula makes sense. It is mandatory to represent the context schema on the level of
proof terms since we cannot apply a lemma without validating the context schema of the called
lemma.

General proof terms: Q ::= box S. P

■;-r- PeF
 generaIR
hboxS.PG DS.F

Note again that the judgment in the premiss of this rule is implicitly indexed by the context
schema S. We discuss how to use proofs of generalized formulas as lemmas in Section 5.7.

120

CHAPTER 5. THE META-LOGIC M\ 121

5.5.2 Provability of Formulas

The proof terms for the provability judgment for formulas and inference rules provide an oper-
ational interpretation of derivations in M.%- Recall that the provability judgment of formulas is
defined by the right rules of the proof calculus of M% • Proof terms for the judgment whose va-
lidity is given by left rules are presented in Section 5.5.3. We start with endowing the axvar-rule
with a proof term. As in any other proof term calculus [Gal93] assumptions are named and the
name of an assumption is used as the proof term. Specifically, in our setting, meta-assumptions
are labeled with variable names. Since this is already the third variable concept presented in this
thesis, but the first for the meta-level, we call them meta-variables and use little bold Roman
letters to denote them (x,y,z). The list of meta-assumptions is generalized accordingly.

Meta-assumptions: A ::= -|A,x€.F

As usual, we assume that all meta-variable names among meta-assumptions in A are pairwise
distinct. Assigning meta-variable names to meta-assumptions extends the rule vmeta slightly.

h * abstract * h A meta f hF formula
 vabstract ——vmeta
* h • meta * h A, x E F meta

All meta-variables, defined in A are subject to instantiation. And instantiations of variables
is best described by substitutions. In particular, in the case of meta-contexts and meta-variables,
we introduce the notion of meta-substitution^ and denote it with 6.

Meta-substitutions: 8 ::= ■ \ 5, P/x

The newly introduced meta-variables are used as proof terms for the rule axvar. If x G F is
an assumption in A, then x is a proof term for F.

(x € F) e A
axvar

*;A hxeF

The proof term for the RV-rule is a simple abstraction, similar to the A-abstraction in the
standard simply-typed A-calculus. The proof term has the form Ax : A. P. Similarly, the proof
term for Rn is an abstraction over variable blocks, which can, at runtime, only be instantiated
with other variable blocks. The proof term for Rn has the form \pL. P.

V,x:A;A\-PeF *,/;AhPGF
RV : : Rn

*; A h Ax : A. P € \/x : A. F $;Ah \pL. P G UpL. F

Not surprisingly, the proof term for the R3-rule looks like a pair (M, P), where M is a well-typed
LF object — the witness object for the existential — and P is the proof term for the body of the
existential formula. As a matter of fact, the proof term for the conjunction rule is very similar;
it is also a pair, where each component is a proof term of the left and right formula, respectively.
Its form is (Pi,P2).

%hM:A $;AhP6F[M/i] tf;Ar-PiGFi $;AhP2eF2

V;A\-(M,P)e3x:A.F ^■,Ah(P1,P2)eF1AF2

121

122 5.5. PROOF TERM CALCULUS

The rule for T is endowed with the symbol () as proof term. Clearly, () does not expect any
arguments.

 RT
tf;Ah () GT

And finally, there is a proof term for the interface rule sei. A derivation of the provability
judgments for declarations corresponds exactly to the list of declarations in a let-expression, as
it is depicted in the following excerpt from the proof of the reflexivity Lemma 4.3 for parallel
reduction.

let

new x : term T,u:x => x
val P xu = refl (E' x)

in

plam (Xx : term T. An : x =4> x. P x u)
end

The list of declarations is represented by declarations P, the proof term for the body is P.
Together they form the arguments to a proof term for the sel-rule which we denote as let D in P.

$;AhDe*';A' 1',*':A.A'hPeP

1>; A h let D in P <E F
sei

All in all, there are seven different proof term constructors, one for each rule, and all are different.
That is, given a proof term, one can immediately reconstruct the derivation by decomposing a
proof term into its components. Here is a complete list of all the proof terms for formulas.

Proof terms: P ::= x | Ax :A.P\XpL.P\ (M, P) | (P, P2) | () | let D in P

This concludes the presentation of proof terms for the provability judgment for formulas. On
the one hand, this fragment is very weak, because it can neither apply induction hypotheses,
nor lemmas, nor perform any kind of case analysis, but on the other, we can already represent
small easy proofs. As example consider the following very simple lemma that states that the
two single parallel reduction steps can be appended to a multi-step parallel reduction.

Lemma 5.11 (Append two single parallel reduction steps) 7/Pi :: ei => e2 andV2 ::
l * e2 ==> es then there exists a V :: e\ => e%.

Its formalization in Mt has the following form:

□ -. VT : tp. VPi : term T. VP2 : term T.VE3 : term T.

V£>! :Pi =U P2.V
3P : Ei ^> E3. T
V£>! : Pi =U E2. VP2 : P2 =U P3.

And the proof is very simple:

v2 pid

E'2 ==^ P,3 P.3 ==> P3
Pi pstep

Pi =U E2 E2 =^ P3

Pi =T" P3

122

pstep

CHAPTER 5. THE META-LOGIC Mt 123

and so is its representation as a proof term in M2 ■

box •. AT : tp. KEX : term T. KE2 : term T. AE3 : term T.

ADi : Ei =U E2.AD2 : E2 =±> E3.
(pstep £>i (pstep D2 pid), (})

In order to show more interesting examples, we must decorate the left rules with declarations
and add case distinction and recursion. Therefore, a complete proof term for the reflexivity
lemma can only be given at the end of Section 5.6.

5.5.3 Provability of Declarations

The proof terms D for the provability judgment \I>; A h D G *'; A' are called declarations,
because they correspond directly to the sequence of declarations in a let statement. In this
subsection we show how. Declarations are represented as a list. The simplest declaration is
hence the empty list, and it is the proof term of Ldone. Following the line of empty contexts,
empty signatures, and empty context Schemas, we denote the empty proof term with "•".

Ldone
tf;Ah-e

The proof term for Lnew has the form v pL.D, where pL is a variable block representing the
newly assumed parameter block, and D is the list of subsequent declarations.

S(L) = SOME Ci. BLOCK C2 tf h a : Cx # H p =Q [a}C2 *,/)L;Ahöe$';A'
 . . Lnew

;Ah!//.DenpL.(';A')

The declarations for LV and Ln are very similar. In the first case, the declaration y G F[M/x] =
P M, and in the second y G F[p'/p] = P p' is added to the list of already determined declarations
D. To judge by the form, P is a functional proof term in both cases, expecting an LF object M
as argument in the first case, and expecting a variable block p' in the second.

*;AhPeVa;:AF ^ h M : A *; A,y G F[M/x] h D G *'; A'
 LV

;Ah(ye F[M/x] = PM,D)e ('; y G F[M/x], A')

f;Ah?en/.F p'Le^ ^\-p'=aP *; A, y G F[p'/p] \- D G *'; A'

;AMye F[P'/P] = P P', D) G ('; y G F[p'/P}, A') Ln

The left rule for 3 captures the result of an induction hypothesis and adds it to the generalized
context. Formally, it is expressed by the declaration (x : A, y G F) = P where P is a proof term,
which computes a pair (M,P') and the declaration operations bind x to M and y to P'. And
again, as we will see in the next chapter x and y must be explicitly typed.

^>;A\- P£3x:A.F V,X : A- A,y G F h D G *'; A'
 L3
; A h ((x : A,y G F) = P,D) G (x : i,';ye F,A')

Finally, there are two projection rules for conjunction on the left. Informally these rules are
used to pick which induction hypothesis is supposed to be applied when proving a mutually

123

124 5.6. INDUCTION

inductive theorem. The declaration for selecting the left induction hypothesis is x G F\ = TTI P,
and he one of the right is not very surprisingly x G -F2 = 7r2 P where P represents the proof of
the mutual inductive theorem.

tf;Ahi>eFi AF2 $;A,xGFi h £> G *'; A'
 LA]

*;Ah(xeFi=7ri P,D) G (tf';x G P, A')

$;AhPeFiAF2 $:A.xGF2Hi?e*':A'
 : :—LA2

; A h (x G F2 = 7T-2 P, £>) G ('; x G F2, A')

Alternatively, one could replace these two rules by one rule that introduces both projections
simultaneously.

All in all, there are six different forms of declarations, each represents one rule. In particular,

a proof term for a derivation in .M.J" *s simply a series of declarations.

Declarations: D ::= • | u pL. D | x G F = P M, D | x G F = P p, D

I (x : A, y G F) = P, D | x G F = iry P. D | x G F = 7r2 P, D

This concludes the presentation of proof terms for the; left rides of A4j, and completes the
presentation of proof terms for the core of the meta-logic M.^. The proof term calculus is
obviously not completely defined yet because none of the non-trivial left rules are applicable.
The attentive reader might have already noticed that A must be empty since none of the right
rules extends it. Hence, none of the left rules (except Ldone) is applicable in the system defined
so far. This is going to change when we introduce recursion and case analysis operators in the
next Section 5.6. In particular, there are no interesting examples we could develop in this version
of M-2i therefore we delay an example until the end of the next section.

5.6 Induction

As motivated in Section 4.1, induction is an important technique when it comes to reason about
programming languages, logics, and type systems. Informally, reasoning by induction about
programming languages is a not too difficult concept, but formalizing it in the presence of
higher-order representations is problematic.

The main drawback of standard induction principles is the closed world assumption, which
restricts the formalization of deductive systems to encodings that satisfy the positivity condition.
The datatype defined must only occur in positive positions in its constructor types. Thus
inductive definitions are very restrictive, in fact, they are too restrictive to handle higher-order
encodings. The entire proof of the Church-Rosser theorem, for example, from Chapter 4 in all
its elegance is simply not directly representable in a framework which only provides standard
induction principles.

The goal and challenge of this section is to extend .M^ by constructs to support the formal-
ization of inductive arguments. Instead of trying to define induction principles for higher-order
encodings, we propose a design based on a realizability interpretation of proof terms. In particu-
lar, the solution we are proposing in this thesis is to extend the proof term calculus to a recursive
functional calculus, where all functions are total — i.e. realizers. Specifically, we are extending
M.2 by the two principles which are sufficient to formalize inductive arguments: well-founded
recursion and complete case analysis.

124

CHAPTER 5. THE META-LOGIC M% 125

Well-founded recursion as opposed to simple recursion guarantees that the computation of
any recursive function is terminating. There cannot be any infinite chains of recursive calls.
Recursion is discussed in Section 5.6.1.

Complete case analysis as opposed to simple case analysis guarantees that while executing a
recursive function some case will be applicable. Therefore the execution of any recursive function
can never get stuck. The technique of complete case analysis is discussed in Section 5.6.2. The
exact definition of what it means to execute a recursive function, i.e. its operational semantics
is presented in Chapter 6.

By guaranteeing well-founded recursion and complete case analysis, all recursive function in
M2 are total, and consequently, it is a sound meta-logic based on a realizability interpretation
of its proof terms.

5.6.1 Well-Founded Recursion

Well-founded recursion is expressed by the standard fixed-point rule with an open-ended side
condition. The new proof term has the form //x G F.P. x is a meta-variable, and P the body of
the fixed-point operator, where x may occur as a free variable. Informally, executing /zx G F.P
means to replace all occurrences of x in P by //x G F. P, but this is discussed in the next
Chapter.

Proof Term: P ::= ... | /zx G F. P

The main emphasis of this investigation is how to enforce termination when executing the fixed-
point operator. In our development, we assume that we have only one outermost fixed-point
operator. If the fixed-point variable x occurs someplace else in the body, it is typically applied
to some arguments.

The critical insight into the issue of termination is, that the vector of arguments to which x
is applied is strictly smaller than the vector of arguments the function was originally called with.
The "smaller" relation must be some well-founded order, i.e. the termination order we specified
with each proof in Chapter 4. Naturally, this order must be fixed for all occurrences of x. This
way, we can guarantee that each chain of recursive calls is finite, and hence the execution of any
recursive function must be terminating.

*;A,xGFhPGF
Rctx

*;Ah/ixeF.PeF

The typing rule for the fixed point is standard, but the side condition is not. For now, we
leave it purposely informal, a more concise formulation is left to Section 7.2.

P terminates in x (5.1)

5.6.2 Complete Case Analysis

Well-founded recursion and complete case analysis turn the proof term calculus into a calculus of
total recursive functions. In particular, we discuss in this section of how to add a case operator
to the meta-logic, and how to enforce that case analysis is always complete. What characterizes

125

126 5.6. INDUCTION

case analysis? In order to answer this question, we start the discussion with the refiexivity
Lemma 4.3 for parallel reduction as example.

D(SOME T : tp. BLOCK x : term T,u : x =U x)L.

VT : tp. V£ : term T.3D : E =U E.T

In the proof we distinguished cases over the term e which is represented in LF as E : term rrn.
A closer look at e led us to consider three cases. One case was the global parameter case, the
second the lam-case, and the third the app-case. It is this case analysis we would like to model
in M.2. We omit the leading context schema quantification.

Case: In the first case, the parameter context must contain at least one parameter block of the

form x : term T,u:x => x, that means, that we have to prove the formula

VT : tp. n(x : term T, u : x =U x)L. 3D : x =^> x.T

Case: In the second case, there is no parameter block, but there is a function representing the
body of the A-term.

VT] : tp. VT2 : tp. VE' : term T] -> term T2. 3D : lam E' =^> lam £". T

Case: In the last case, there are two new assumptions, one represents the function, and the
second its argument.

VTi : tp. VT2 : tp. VE] : term (T2 arrow Tx).\/E2 : term T2.

3D : app E\ E2 => app E\ E2.T

The first observation is that case analysis is not local: in general we have to consider more

than one assumption in vl>. For example in all three cases above the formula 3D : E => E. T is
refined by instantiating E with the concrete forms E takes in each case, 'V' in the first, "lam E'n

in the second and "app E\ E2
r' in the third. In particular, if E occurred in the types of other

universally quantified assumptions, these occurrences would be instantiated, too. Moreover,
because of dependencies, consider cases over one assumption might partially instantiate others.
To see that, consider the diamond Lemma 4.6.

DSOME T : tp. BLOCK x : term T, u : x =U x.
VT : tp. V£ : term T. V£' : term T. V£r : term T.

\/D< : E =U El.\/Dr : E =U Er.

BE' : term T. 3R1 : E! =L> E'. 3Er : Er =U E'. T

In its proof, the first proof operation we performed was a case analysis on D1. The first case

to be considered is that Dl is instantiated with a global parameter u. Since u : x =>• x, for
x : term T, declared by the same variable block, clearly E and El must equal x. The same holds
for the next case that Dl is instantiated "pbeta D[Dl

2 . Because of dependencies, this means
that E must have been instantiated with "app (lam E\) E2 for an E\ of type term T\ -> term T
for some type T\. And E' must be the result of applying some E[(an LF-function) to some E2

126

CHAPTER 5. THE META-LOGIC M% 127

(of appropriate type). While abstractly describing the case analysis, we do not know exactly
what E[and E'2 are instantiated with, we only know that they must exist.

Formally, all universal assumptions in the examples are represented by a generalized context
\I/. Subsequently, each case analysis of \I/ leads to a new generalized context $'. As example,
consider the reflexivity Lemma 4.3.

Example 5.12 (Case analysis in reflexivity Lemma 4.3:) The form of the generalized
context representing all universally quantified assumptions right before case analysis is

* = T : tp, E : term T

and the form of the generalized context in each of the cases right after case analysis are

Case: $[= T : tp, (x : term T,u : x =U x)L

Case: % = Tx : tp, T2 : tp, E' : term Tx -> term T2

Case: *'3 = Tx : tp, T2 : tp, Ex : term (T2 arrow TX),E2: term T2

As second example, consider the diamond Lemma 4.6.

Example 5.13 (Case analysis in diamond Lemma 4.6) The form of the generalized con-
text representing all universally quantified assumptions right before the first case analysis is

= T : tp,E : term T,El : term T,ET : term T,Dl : E =U E\Dr : E J* Er

and the form of the generalized context in each of the cases right after case analysis on Dl are

Case: V[= T : tp, (x : term T, u : x =U x)L, Er : term T,Dr : x =U Er

Case: % = T : tp,Ti : tp,#i : term Tx -> term T,^ : term Ti,.E[: term Tx ->

term T,£2 term Ti,£r : term T,£>^ : lix : termTx.x =^ a: -> #i a; =^=)> E[x,Dl
2 :

E2 =±> El
2,D

r : (app (lam^) E2) =U Er

Case: % = T : tp,T' : tp,£ : term T -> term T',£?' : term T -> term T',£r :

term (T arrow T'), D' : nz : term T. a; =U x^ Ex =U El x,Dr : (lam E) =U Er

Case: *^ = Ti : tp,T2 : tp,£i : term T2 -> term Ti.-Eb : term T2,^ : term T2 ->■ term Tx,E
l

2:

term T2,£
r : term T1,D[: EX =±> E[,Dl

2:E2 =U El
2,D

r : app EX.E2 =^> Er

Again, all assumptions in ^/'1,...,'^'A represent exactly the available assumptions after case
analysis of the first parallel reduction Dl, as implicitly assumed in the informal presentation of
the proof of Lemma 3.7. There the situation is slightly different, because we performed two case
analysis at once, whereas here, we only present the one over Dl.

It is one of the major technical contributions of this thesis of how to design the case-
distinction operator in order to capture this refinement of generalized contexts. Our solution
employs generalized substitutions (defined for generalized contexts) whose definition we address
in the following.

127

128 5.6. INDUCTION

A generalized substitution is defined very similarly to LF level substitutions in Section 5.2.
The main difference is, that its domain and its co-domain are generalized contexts, and therefore
a special case for substituting context variables must be provided; only variable blocks can be
substituted for variable blocks. Generalized substitutions are denoted by ip.

Generalized substitutions: ip ::— ■ \ ip,M/x \ ip,p'/p

The composition of generalized substitutions is very similar to Definition 5.1 with one extra case
for variable blocks.

Definition 5.14 (Composition of generalized substitutions)

• O lj>2 = '02

(V>i, M/x) o 4>2 = (V;i o V>2), M[fa] jx
(01, P'IP) ° V;2 = (V;i ° V;a), [^2\p'IP

where we write [ip]p to apply a generalized substitution to a variable block, or more precise to
the types declared within. The prefix notation indicates that the substitution is applied to a list
of entities. It is an abbreviation for

[# = •
[V>] U:A,p) = x: A[p], [V;, x/x]p

Note that if p = xj_ : A\,... ,xJl: An and p' = y_ : B\,... y„ : B„, then p/p' is a substitution
which substitutes xj_ for y; for all i < n. Specifically, [ij>2]p' updates only the type information
in p' but leaves the variable names in p' untouched. In our shorthand notation [i/>2]p'/p denotes
exactly the same generalized substitution as p'/p does, but the co-domain may be different.

Returning to the Example 5.12 of the reflexivity Lemma 4.3, there are three generalized
substitutions ^>i, V;25 V

;3i one associated with each case:

Example 5.15 (Generalized substitutions and the reflexivity Lemma 4.3)

Case: The first case of the proof translates into t/>i = T/T, x/E, where * is its domain and \I'j its
co-domain. The x/E in the substitution corresponds to the x in the informal presentation

in Lemma 3.4, where x is declared of the variable block p = x : term T,u : x =>■ x.
In this special case x is a binding occurrence of a parameter block. There can also be
non-binding occurrences of variable blocks, which we encounter in the example about the
diamond lemma below.

Case: The second case is also expressed by a simple substitution relating ty'.2 t° ^'- V;2 =
(Ti arrow T2)/T, (lam E')/E

Case: And so is the third case: The domain of ^ is \I>, and *'} is its co-domain. V;3 —
T1/T,(&ppElE2)/E

The difference between binding and none-binding occurrences of variable blocks in a context
is illustrated by the proof of the diamond Lemma 4.6. We ptit special emphasis on the first case:

128

CHAPTER 5. THE META-LOGIC Mt ; 129

Example 5.16 (Generalized substitution and the diamond Lemma 4.6:)
This example extends Lemma 5.13

Case: <&[= T : tp, (x : term T,u : x =U x)L, Er : term T,Dr : x =U- Er:

The first case translates into the generalized substitution

tpi = T/T,x/E,x/El,u/Dl,Dr/Dr

The variable block (x : term T,u:x ==> x)L is a binding occurrence because, informally,
when the case is executed, the instantiation of E, El, and Dl determine the parameter
block in the context. In the original proof of the diamond Lemma 3.7, we discussed how
to assume the existence of a second parameter block in order to distinguish cases over
Dr. Because of typing constraints, the two variable blocks are constrained to be identical
because as the left reduction, the right reduction starts in x. In our system there are two
options to express the second case analysis:

1. Define a second case analysis which is defined inside the scope of the first, with a new
domain <]/" and a substitution tp[

*'/ = T :tp,(y: term T,v:y_ =U y)L

tp[= T/T, {y : term T, v : y =^> y)/(x : term T, u : x =U x),y/Er,v/Dr

The variable block (y : term T, v : y =>■ y)L is a non-binding occurrence of a
variable block. It is merely a renaming of x and u to y and v.

2. Modify the generalized context ty" and the generalized substitution tp" to also ac-
commodate the second case analysis.

*i' = T : tp, (x : termT,u : x =U x)1

ip'l = T/T,x/El,x/Er,u/Dl,u/Dr

and again is (x : term T,u:x =>■ x)L a binding occurrence of a variable block.

It is possible to use either of these two representations, and the attentive reader might
have noticed that tp" is nothing else but a composition of ip\ and ip[.

Case: % = T : tp,Ti : tp,£i : term 7\ -S> term T,E2 : term TUE[: term 7\ -»

term T,El
2 term Tx,E

r : term T,D[: lix : termTi.a: =U x -»■ Ex x =±> E[x,Dl
2 :

E2 J* El
2,D

r : (app (lam Si) E2) =U Er:

The substitution which expresses the relationship between ty and ty'2 results from a
straightforward instantiation of assumption in \I/:

tp2 = T/T, (app (lam EY) E2)/E, {E, E2)/E
l,Er/Er, (pbeta D[Dl

2)/Dl, Dr/Dr

Case: % = T : tp,T' : fp,E : term T -»• term T',El : term T -»• term T',Er :

term (T arrow T'),Dl : na; : term T.x =k- x -> E x =^> El x,Dr : (lam E) =^ Er:

Analogously, the relationship between ^ and ty's is expressed by the generalized substitu-
tion tpz-

V>3 = (Ti arrow T2)/T, (lam E)/E, (lam El)/El,Er jEr, (plam Dl)/Dl,Dr/Dr

129

130 5.6. INDUCTION

Case: % = Tx : tp, T2 : tp, Ex : term T2 -> term TUE2: term T2,E{ : term T2 -» term Ti, £2 :

term T2,£
r : term Ti,D[:Ej. =U E[,D'2:E2 =U E\,Dr : app Ex E2 =U Er:

And finally, the relationship between \I> and ty'4 is expressed by the generalized substitution

ti = T/T, (app Ex E2)/E, (app E[El
2)/'El, Er'/'Er, (papp D\ D'2)/D

1
, Dr/Dr

These two example clearly demonstrate the general idea behind the design of the ease con-
struct. Each case is expressed by a substitution and its co-domain. The domain of the Substi-
tution is the context in which the original case-expression is valid (it therefore stays invariant
for all the cases) , and the co-domain of the substitution is the context in which the body of a
case is valid.

The subject of the case construct is hence not simply one LF object, instead it is a list of LF
objects (a substitution) that instantiates all variables declared in the context simultaneously. In
summary, we use the basic idea of explicit substitutions [DHKP96] to encode the case subject.
An explicit substitution is a substitution which is turned into a first-class object of the calculus.
We use such an explicit generalized substitutions in order to represent the case subject, that is

In order to make this presentation more uniform, we also use explicit meta-substitutions to
capture the instantiation of meta-variables. These observations give rise to a new proof term,
which is defined in terms of a list of cases.

Proof Terms P ::= ... | case (i/r: 8) of fi
Cases U ::= • | fi, (# > ^ >-> P)

The (i/r. 8) part of the new proof term is a pair of already discussed explicit substitutions,
and fl is a list of cases. Each case describes the substitution tj> in order to recognize if a case
is applicable, its co-domain which describes all assumption and block variables available to the
body of the case, and finally the body P of the case itself.

Operationally speaking, assume that at the time of execution case (ij)\8) of Q is given and is
the term is closed (it doesn't contain any free variables). Consequently, ij) is ground substitution.
A case (<b'>ij)' t->- P) £ Q is applicable, if the system can construct a closed substitution i/>" (the
new environment) with domain \I'' from ?/; (the old environment), such that tp' oif/' = ij>. If such
a ip" exists, informally, the case is applicable, and the body P of the case can be executed after
all variables from <ä>' have been replaced according to ij/'.

All proof terms are now defined and we can return to the reflexivity lemma 4.3, and illustrate
its proof term. Proof terms in their internal formulation arc very verbose, difficult to parse and
painfully hard to interpret. We therefore opt to illustrate the internal version only once in
the next example, and use the more familiar notation of proof terms (from Chapter 4) in the
remainder of this thesis. In addition, this notation is easily definable as syntactic sugar.

Example 5.17 (Proof of the reflexivity Lemma 4.3) As derived by syntactic refinement
in Section 4.2.2, the proof of the reflexivity lemma

DSOME T : tp. BLOCK x : term T, u : x =U x.

VT : tp. VE : term T.3D : E =U E.T

130

CHAPTER 5. THE META-LOGIC MJ 131

is a recursion. To the left is the version we have already seen, and to the right is the internal
representation, where we omit some type and formula annotations.

fun refl x = u box (SOME T : tp. BLOCK x : term T, u : x =h- x)L.
| refl (lam (Xx : term T. E' x)) = A**efl. AT : tp. KE : term T.

let case (T/T, E/E; refl/refl) of

new x: term T,u:x =^> x (T : tp, (x : term T,u : x =U x)L>T/T,x/E
val Pxu = refl (E' x) *-> <«, 0».

in (Ti : tp, T2 : tp, E' : term Tx -» term T2

plam (Ax. AM. PI«) > (T\ arrow T2)/T, (lam E')/E

end H> let i/ (x : term Ti,u:x => x)L.
| refl (app #i E2) = Xl = refl T2, x2 = Xl (£7' x), <P, x3) = x2

*et in (plam (Xx : term T\. Xu : a; ==> i.Pia),())),
val Px = refl Ex (Tj . tp? T2 . tp> Ei . term ^ arrow 7^), P2 : term T2

< val P2 = refl E2 > Tl/T> (app ^ £2)/#
in i-> let

papp PXP2 Xl = refl (Ta arrow Ti), x2 = xi £i, (Pi, x3) = x2,
yi = reflT2,y2 = yi E2,(P2,ys) = yi

in (pappPx P2,()))

end

Similar to LF-level substitutions from Section 5.2, generalized and meta-substitutions must
be well-formed — we establish this property by two judgments. Generalized substitutions map
generalized contexts into generalized contexts but generalized contexts themselves are already
a prerequisite for meta-contexts. Consequently the definition of meta-substitutions relies on
generalized substitutions.

The first of the two judgments is that of well-formed generalized substitutions, \I/' \~ tp £ Nt.
Clearly, * is the domain of the substitution and ty' is its co-domain.

Judgment:

Well-typed generalized substitutions f' h (/> G $

The semantics of this judgment is defined by three inference rules. The empty generalized
substitution is well-formed with an empty domain. Recall, that variable blocks are used to
express the presence of a parameter block in the parameter context. Consequently, the image
of a variable block must be a variable block. Finally there is the expected rule which allows a
substitution of any well-typed LF-term for an assumption variable.

Rules:

h *' abstract sempty
*' h • £ •

p'L £ * f'hp'EQ [i/f]p *' h tj) £ tf *'hM: A[i/>] *' h </> £ *
 sblock sass

*' h {ip, p'/p) £ tf, / *' h (</>, Af/x) £ *, x : A

Generalized substitution composition is well-defined.

131

132 5.6. INDUCTION

Lemma 5.18 (Composition of generalized substitutions)

//Pi :: *2 H 4>i ■ #i
and T>2 :: *3 I- i>2 : *2
i/ien ^3 h ^i o ^ : ^ I

Proof: by structural induction on V\. D

Generalized substitutions are a prerequisite for the definition of well-defined meta-
substitutions. As a reminder, a meta-substitution replaces meta-variables by entire proof terms,
as it is for example necessary when evaluating the fixed point-operator. Substitutions on meta-
variables are used very often in the remainder of this thesis, for example in the substitution
Lemma 6.20 which we prove in the next chapter. The judgment, expressing that a meta-
substitution is well-formed, is in principle just an extension of the previous judgment.

Judgment:

Well-typed meta-substitutions *'; A' h^;5e*;A

In the spirit of extending the first judgment, the semantics of well-typed meta-substitutions
is defined by two inference rules. The first rule coerces a standard well-formed generalized
substitution to be a well-formed meta-substitution in the base case. The other expresses when
non-trivial meta-substitutions are well-formed.

Rules:

*' V- V; G * *'; A'hPe F[ij>] *'; A' h ^ 5 G *; A
sabstract smeta

*'; A' h V->; • G *; • *'; A' h I/K 6, P/x G *; A, x e F

In order to be perfectly precise, a precondition for the two judgments is, that all involved con-
texts are well-formed. That means that for the first judgment we can assume that H \I> abstract
and h \I/' abstract, and for the second, we assume that $hA meta and *' h A' meta.

Meta-substitutions can be composed and we write (i/>; 5) o (i//; 5') = (ij>"; 8") for the resulting
substitution. It is defined in a straightforward way, where we assume the that meta-substitutions
can be applied to a proof term P[tjr, 6].

Definition 5.19 (Composition of meta-substitutions)

(^•)°W'V) = bl>° ■>!>'•,•) (cempty)
M<J,P/x)o(^;<?') = (W",P[V';<n/x) (cmeta)

where (V>; 6) o (i//; S') = W;5")

Meta-substitution composition is well-defined, too. Since its proof relies on a substitution
lemma for applying meta-substitution to programs, we postpone the proof this lemma until
Section 6.2.4, Corollary 6.21.

Lemma 5.20 (Composition of meta-substitutions)

132

CHAPTER 5. THE META-LOGIC M% 133

7/X>i::*2;A2l-^i;<JiG*i;Ai
and V2 :: *3; A3 h tp2; h G #2; A2

then *3; A3 h (^>i; <Ji) o (^2; <J2) e * 1; Ai

The special character of a meta-substitution to extend a generalized substitution is clearly
exhibited by the observation that the underlying generalized substitution can easily be extracted
form the meta-substitution.

Lemma 5.21 IfV :: *'; A' h ^;8 G *; A
f/ien *' I- ^ G *•

Proof: by induction on V. □

In many proofs below, we will encounter identity substitutions, i.e. substitutions whose do-
main and co-domain are equal, and every variable is mapped to itself. If an identity substitutions
acts on an LF context F, we write idr- Likewise a generalized identity substitution on \I/ is writ-
ten as id^, and a meta identity substitutions on A as idA- In the remainder of this thesis we take
the freedom to simply omit identity substitutions from the formalism, if it does not contribute
to the presentation of the material. For example the instead of if>; idA we simply write ip.

We continue this rather technical discussion, and present now the final extension to
the inference rule system of M2 ■ The rules will capture the essence of case analysis
in order to define and formalize recursive functions in M2. Recall, from Example 5.17
that there is the case construct itself which takes as argument a list of cases Q which
must also be well-formed. Obviously, O's well-formedness requires a judgment by itself:
\I/; A h Q G F, where F is the formula, and each case in Q must be valid. Typically, F

is an existentially quantified formula, such as 3D : E =^> E. T in the refiexivity lemma, or

3E' : term T. 3Pl : El =k- E'. 3Pr : Er =U> E'. T in the diamond lemma.

Judgment

Well-formed case lists: $;Ahfi£F

The typing rule for case requires, that the case subject is a valid meta-substitution and that
all cases are well-typed.

Rules

f;Ah case {ip;5) of 0 G Fty]
case

Cases are well-formed, if each of the substitutions is well-formed with the associated gener-
alized context as its co-domain. In addition, the proof term associated with each case must be
well-formed in the same generalized context. There is a generalized substitution ip that express
how a case is being refined when it is successfully applied. The well-formedness proof can (and
in most cases will) use the meta-assumptions given in A, but because case analysis might have
distinguished cases over other variables which occur free in the formulas in A, the refinement
must be reflected, written as [tp]A in alt's premiss. Likewise, ip must be applied to the formula

133

134 5.6. INDUCTION

in premiss of alt below. The precise definition of substitution application together with the
associated properties are postponed until the next Chapter.

base
*;Ah •€ F

*' h V e * f;Ahfief *'; [V;]A hPe F[V;]

*;AI-fl!($'>^P) ef
alt

This almost completes the presentation of the typing rules for case analysis. The only thing
missing, is that the proof terms which are formalized in this system are realizers, which means
that the case rule must guarantee that all cases are always covered, a property which is also
referred to as coverage [Roh96]. Similarly to the side condition for termination 5.1, we endow
the case rule with a side condition which enforces coverage.

Informally, the coverage condition guarantees that if the recursive function (the proof term)
is executed in an environment possibly defined in a concrete parameter context, and all as-
sumption and variable blocks in the generalized context are instantiated with LF objects and
parameter blocks, then the case analysis can be successfully executed, and at least one case
applies. Consider the following situation. We are presented with a well-typed term

lam (Xx : term nat. a;) : term (nat arrow nat),

where we assume that nat : tp is a base type for natural numbers. The objective is to construct a

term of type "lam (Xx : term nat. x) => lam (Xx : term nat. j;)". This can be easily established
by employing the recursive function refl, and applying it to the argument "lam Xx : term nat..;;".
Once the evaluation reaches the point of case analysis, there is a case which applies: it is the
second in Example 5.17.

But in general this is not necessarily the case. The rules defining the well-formedness of
cases do not imply that a case is guaranteed to be applicable. Of course, this observation is
not new. The same observation holds for any functional programming language, as for example
ML [MTHM97] or Haskell [Tho99, HudOO] which employs pattern matching; in a situation where
no case is applicable an exception is raised.

This solution is unacceptable for our situation. We must enforce that all recursive functions
are realizers, that is evaluation must always make progress and eventually terminate. Termina-
tion is already informally guaranteed by side condition (5.1). It remains to guarantee that the
evaluation of each recursive function makes progress under all circumstances.

In the quest for coverage, we first examine what it means for a rule to be applicable. At the
interesting point in the evaluation, shortly before cases are analyzed, there exists a generalized
substitution, (or better environments as they are called in functional programming languages)
which has the following form:

• h ((nat arrow nat)/T. lam (Xx : term nat. x)/E) e (T : tp, E : term T)
v_ v /

V

Recall that the applicable case has the form

(Ti : tp, T2 : tp, E' : term Tj -»• term T2) > ((Ti arrow T2)/T. (lam E')/E) .->...
v w ,

134

CHAPTER 5. THE META-LOGIC MJ 135

In detail, the rule is applicable, because the environment 77 is decomposable into a new environ-
ment, call it rj', and ip. We do not show how to calculate this new environment rf from 77 and
tp, this is left to the next chapter. Instead we simply state the result:

• h (nat/Ti, nat/T2, (Xx : term nat. x)/E') G (T : tp, E : term T)

One can easily see, that 77' is the right choice of environment since the composition of tp and rf
inevitably yields 77:

((Ti arrow T2)/T, (lam E')/E) o (nat/Ti,nat/T2, (Xx : term n&t.x)/E') =
((nat arrow nat)/T, lam (Xx : term na,t.x)/E)

More formally, we say that a list of cases fi covers all cases, if any environment 77 can be
decomposed into 77' and ip for some case (\I/' D> ^ 14 P) £ ß.

fi is a complete case cover (5.2)

This side condition is associated with the case rule. The general problem of coverage is undecid-
able, but in Section 7.3, we will give a formal but sufficient criterion for coverage. It is semantic
in nature; there is no feasible way to try every instantiation of ip a priori. Semantic conditions
are in general impossible to enforce directly. Therefore we present in Section 7.3 a syntactic
criterion on 0, which — when satisfied — guarantees complete case coverage. As we will see,
the entire construction rests on the shoulders of the canonical form Theorem 2.6 for LF.

Side condition (5.2) enforces a condition on the refinement substitution ip which are part of a
case (*' > ip H-» P) € 0. The rule alt guarantees that the substitution is well-typed: \I>' h ip <E $.
The following example shows that \I/' should not be unnecessarily large. If it were, an oracle
would be necessary to assign an operational semantics to our proof term calculus. Consider the
slightly extended lam-case of the reflexivity lemma (by adding Q : term Ti —)• term I\).

Ti : tp, T2 : tp, E' : term Ti -> term T2, Q : term Ti -> term Ty

> (Ti arrow T2)/T, (lam E')/E H» ...

After applying the decomposition rule to r\ above using ip we arrive at an extension of 7/' which
also instantiates Q. The value of Q cannot be determined from 77 itself since Q is not mentioned
in any of the LF-objects used in 77. It is hence entirely under-constrained, which gives rise to
a possible non-deterministic choice: We simply choose Xx : term T\ .xiovQ and complete the
decomposition.

• h nat/Ti, nat/T2, (Xx : term nat. x)/E', (Xx : term T1.x)/Q G T : tp, E : term T

The strange behavior associated with allowing unconstrained assumptions in \&' is even more
clearly illustrated by the following extension of \I/'; adding Q : term T2 —> term T\

Ti : tp, T2 : tp, E' : term Tx -> term T2, Q : term T2 -> term Ti
0 (Ti arrow T2)/T, (lam E')/E ^ ...

renders the case inapplicable because there is no possible instantiation for Q. Such non-
determinism therefore blurs the interpretation of proof terms as recursive functions. In general,

135

136 5.7. LEMMAS

we require that each 77 can be decomposed into a xj) and some 77'. Moreover, we require that, this
decomposition is unique. Note, that 77 and 77' need not to be closed; as usual they might be open
in some parameter context, expressed abstractly by $. All these requirements are summarized
by the following side condition which we associate with alt-rule.

For all rj ($ h 77 <E *) there exists an 77' ($ h 77' E *') s.t. 77 = ij> o rf (5.3)

Similar to side condition (5.2) it is semantic, probably undecidable, but we present a sufficient
syntactic criteria in Section 6.4.

This concludes our presentation of two new meta-level proof terms expressing well-founded
recursion and complete case analysis which turn as we will see in Chapter 7 the proof term
calculus of M2 into a calculus of total recursive functions, warranting the soundness of M.^.
We have established three semantic side conditions for the rules for which we present precise
syntactic criteria in the chapters to follow. We conclude this chapter with a discussion of how
to add lemma application to M^-

5.7 Lemmas

Theory and proof development without lemmas is unthinkable. Meta-logical arguments always
consist of a sequence of lemmas as for example the development of the Church-Rosser theorem
presented in Chapter 4. Using an auxiliary notion of parallel reduction, the proof of the Church-
Rosser property of ordinary reduction is reduced to the Church-Rosser property for parallel
reduction each of which is derived by a series of lemmas. In the discussion so far, we have
presented all techniques necessary to formalize proofs which do not rely on other lemmas, the
basic building blocks of a formal theory so to speak. We generalize this idea in this section by
adding the ability to apply other lemmas to our system. With this technology at hand, we can
formalize all lemmas and theorems from Chapter 4.

The reader may wish to skip this section in the first reading. If all lemmas in the development
of a theory depend on one but fixed world extension this section does not contain any new ideas.
In such a situation lemmas can simply be added as meta-assumptions to A. If on the other
hand, the lemmas necessary for a development require many possibly different world extensions,
the mechanism presented in this section apply.

This section is structured as follows. First we introduce the necessary basic definitions of
lemmas in Section 5.7.1. As presented in Section 4.2.2, lemmas and theorems also take the shape
of the parameter context into account. A criteria which expresses if one lemma can call another
without violating the context schema restriction is presented in Section 5.7.2. In Section 5.7.3
we finally present the new proof rules extending the proof term calculus of M.^-

5.7.1 Preliminaries

Lemmas are a very valuable and an important organizing force in the development of theories.
Typically theories are built as hierarchies of lemmas. If well-chosen, this hierarchy can support
the automated validation of changes to the underlying definition of a formal system. For example
in Section 4.2.3, when we extend the simply-typed A-calculus by polymorphism, all lemmas for
the Church-Rosser theorem are still true (with a very minor modifications in the definition of
context Schemas, by adding a block schema for type variables).

136

CHAPTER 5. THE META-LOGIC M% 137

What are lemmas? Lemmas are general formulas, i.e. they define a context schema and a
formula whose proof possibly relies on meta-hypotheses, i.e. proofs of other lemmas which are
assumed to be true. For example we can prove confluence Lemma 4.8 under the assumption that
the strip Lemma 4.7 is true. Likewise, the proof of the strip lemma relies on the truth of the
diamond Lemma 4.6, which itself depends on the truth of the substitution Lemma 4.5. It should
be clear, that a general formula is only proven, if all of its meta-hypothesis are instantiated by
real proofs. Formally, we first extend the notion of general proof term to allow meta-hypothesis.

General proof terms: Q ::= ... | x

Meta-hypotheses are organized in form of a lemma repository which is very closely related
to the list of meta-assumptions A and the instantiation of meta-hypothesis is described a sub-
stitution like structure, called a lemma instantiation.

Lemma repository: E ::= • |S,x€ G
Lemma instantiation: £ ::= • | £, Q/x

In addition, each judgment of the formal proof system M.% is being equipped with such a
lemma repository. There are three such judgments expressing the provability of general formulas,
formulas, and declarations.

Judgments

Provability of general formulas: E \- Q E G
Provability of formulas: ^jAjEhPef
Provability of declarations: $; A; 5 h £) G f'; A'

E is not going to change during the proof of a meta-theorem. It only changes when meta-
hypothesis are instantiated. Therefore, a meta-theorem G is proven if its proof is closed, that is
formally, if there exists a proof Q such that ■ h Q € G.

5.7.2 Context Schema Subsumption

One of the main characteristics of a lemma is the form of the world extension for which it is
defined. World extensions are described by the context schema. The need of context Schemas
has been motivated and discussed in Section 4.2.2 in great detail. In particular, context Schemas
are necessary in order to express properties of deductions which are not necessarily closed. The
diamond Lemma 4.6 for example contains the declaration of the context schema

(SOME T : tp. BLOCK x : term T, u : x =U x)L

which serves as a quantifier over all regularly formed parameter contexts of the form:

(xi : term Ti, u\ : X_ => xi)L, ...{xn\ termT„, Un : Xn => Xn)L

The question, if the proof of the diamond lemma can use to the transitivity Lemma 4.4. Surely,
if the transitivity lemma is proven for the same world extension as required by the diamond
lemma, the application is sound. If it isn't it may not be sound. Which lemmas can be applied
from within a meta-proof and which can not is determined by a relation between the context

137

138 5.7. LEMMAS

schema of the lemma to be proven to the context schema of the lemma to be applied which we
call subsumption relation.

More abstractly, if a formula is to be proven for any parameter context $ € [5J, and one is
tempted to apply lemma OS'.F, then such an appeal is admissible if $ G [S"J. This is a very
strong requirement, and without doubt, it can be relaxed. We postpone the discussion on more
sophisticated context subsumptions until Section 9.1.3.

Definition 5.22 (Context subsumption) We say that context, schema S' subsumes context
schema S iff $ G [S\ implies that $ G \S'\.

Context subsumption is a semantic criteria and in this, it is very similar to termination,
coverage, and strictness. A very simple minded syntactic criterion for context will be presented
in Chapter 6.

It is clear, that the diamond Lemma 4.6 can appeal to the substitution Lemma 4.5, because
both context Schemas are the same, and hence the subsumption condition is trivially satisfied.

5.7.3 Proof Rules

The concepts of lemmas requires two additional proof rules for M.^ (Section 5.5), one to type
meta-hypothesis, and the other to express lemma application. The first rule extends the provabil-
ity judgment on general formulas, and the second the judgments of provability of declarations.
The complete and final set of proof rules for M.\ is presented in Appendix A.

So far, a general formula is considered proved if its body is provable from no other assump-
tions. Since we have extended the meta-logic by meta-hypothesis, we must add one more rule.
Each meta-hypothesis is a proof.

x G G G E ,
 mhyp
ShxGG

Next to the new left rule. So far, the only two application rules where LV and LV, which pick
a meta-assumption from A, and apply them to either an LF-term or a block-variable to the
meta-assumption, respectively. Likewise, if Q is a general proof term, it can be considered for
application. Recall that the judgment for the provability of formulas is indexed by a context
schema S and a signature £•.

EhQeaS'.F *;AjeF;Shi)ef'';A'

*; A; E H y G F = lemma Q,D <E *'; y G F, A'

Of course, as side condition, we must require that the context schema of the callee S' subsumes
the context schema S of the caller.

S' subsumes S (5-4)

The Church-Rosser theorem is provable under the meta-hypothesis, that the confluence prop-
erty holds; there is a proof term Qcr, which one obtains by desugaring the proof term in Fig-
ure 4.7,

138

CHAPTER 5. THE META-LOGIC .Mt 139 L2

conf G DSOME T : tp. BLOCK x : term T,u : x =U x.
VT : tp. V£ : term T. VEl : term T. VE7" : term T.

\/Dl : E =^- E'.VDr :E =^ Er.

3E' : term T. 3E* : £' =^» E'. 3Rr : £r =^> £'. T

H Qcr e DSOME T : tp. BLOCK x : term T,« : x =±> x.
VT : tp. \/El : term T. V£r : term T.

VD-.E1 «=> Er.
3E' : term T. 3i?/ : E =^ £'. 3iT : Er =^ £'. T

Similarly, the confluence lemma is provable under the meta-hypothesis that there is a proof
of the strip lemma: Qconf is the desugared version of the proof term in Figure 4.6.

strip G DSOME T : tp. BLOCK x : term T, u : x =U x.
VT : tp. V£ : term T. ME1 : term T. V£r : term T.

VD; : E =U- £'.VT>r : E =^- £r.

3£' : term T. 3£* : A' =2* E'. 3Rr : Er =U E'. T

h Qconf G DSOME T : tp. BLOCK x : term T, u : x =^> a;.
VT : tp. V£ : term T. V£* : term T. VT7 : term T.

\/Dl :E =£» £'.VZF :E^Er.
3E' : term T. 3i?' : £?' =^> £7'. 3i?r : Er =*> E'. T

The strip Lemma 3.8 is based on the diamond Lemma 4.6, and its proof term Qstriü 1S *ne

desugared version of the proof term in Figure 4.5.

dia G DSOME T : tp. BLOCK x : term T, u : x =^> x.
VT : tp. \/E : term T. V£* : term T. VT7 : term T.

VT>' : E =^4> £'.VDr : £ =^. Er.

3E' : term T. 3Rl : El =^ E. 3Rr : Er =U E'. T

h Qgtrip G DSOME T : tp. BLOCK a; : term T,u:x=Ux.
VT : tp. V£ : term T. WE1 : term T. V£r : term T.

VT>* : E =U #'.VT>r : J5 =^> £r.

3£' : term T. 3#' : £' =^- E'. 3Rr : Er =U E'. T

On the other hand the diamond Lemma 4.6 is provable using the substitution as meta-
hypothesis. The proof term Q^ia *s ^e desugared version of the proof term given in Figure4.4.

139

140 5.7. LEMMAS

subst G DSOME T : tp. BLOCK x : term T,u:x =U x.
VTi : tp. VT2 : tp. VE] : term T2 -* term TY. VE[: term T2 -> term Ti.
VE2 : term T2. VE2 : term T2.

VZ?i : (n?y : term T2.y =U y -> Ex y =U E\ y). VD2 : E2 =^ E2.
3P :ElE2 =U E[E2. T

h Qdia G DSOME T : tp. BLOCK x : term T. u : x =U x.
VT : tp. VE : term T. VE' : term T. VEr : term T.

VD' : E =U El.MDr : E ==> Er.

3E' : term T. 37?/ : E' =^ E'. 3/?'' : E'' =4 E'.T

Finally, the substitution lemma is directly provable. The proof is formalized by the proof
term QSUDSt) the desugared version of the proof term given in Figure 4.3

• h <2subst e DSOME T : tp. BLOCK x : term T, u : x =U x.
VTi : tp. VT2 : tp. VE, : term T2 -* term T\. VEJ : term T2 ->• term T,.
VE2 : term T2. VE2 : term T2.

VEi : (fly : term T2.y => y -»■ E, y =U Ej y).V£>2 : E2 =L» E2.

3P:E! E2 =4- E'j E2.T

How can we obtain a closed proof the Church-Rosser theorem? By using lemma instantia-
tions. Lemma instantiations act as substitutions on the meta-level. Entire proofs are substituted
into proof terms, hereby gradually instantiating meta-assuniptions. Naturally, lemma instanti-
ations must be well-formed.

Judgment

Well-formed lemma instantiations: S' h Q G S

Intuitively, a lemma instantiation is well-formed, if it is either empty, or if the general programs
Q are really proofs of the formulas the claim to be proofs of.

\-Q£G E'h^GE
sabstract smeta

E' h • G • S' h £, Q/x G S, x G G

Similar to substitution we write Q[£] in order to apply a lemma instantiation £ to a general
proof term Q. Lemma instantiations can be composed the same way, substitutions can.

Definition 5.23 (Composition of lemma instantiations)

■ ° 6 = 6
(ZuQM°b = (h°b),Q[b]/x

Provided, that there is a substitution lemma for lemma instantiations (which we prove in Chap-
ter 6), we can prove the validity of lemma instantiation composition.

140

CHAPTER 5. THE META-LOGIC A4+ 141

Lemma 5.24 (Composition of lemma instantiations)

7/Pi::S2l-£i:2i
and T>2 :: S3 h £2 : ^2
tfien S3 I- £i o £2 : Si

As example, consider the a combined proof of the Church-Rosser theorem for parallel reduction,

■ H <3cr[<3Conf [(3strip[(3dia[(3subst/subst]/dia]/striP]/conf]
6 DSOME T : tp. BLOCK x : term T,u:x =^> re.

VT : tp. \/El : term T. V£r : term T.
MD : El <=^ Er.

BE' : term T. 3i?' : El => £'. 3iT : £r =^> £'. T

By easy inspection, if follows that all involved lemma instantiations are well-formed, and by
the meta-theory which we start to describe in the next Chapter that this proof term indeed
formalizes the proof of the Church-Rosser theorem.

5.8 Summary

In this Section we have described the meta-logic M\ and an appropriate proof term calculus
which formalizes meta-proofs as recursive functions. Among the many rules, there are four rules,
which have side conditions in order to guarantee that the proof term calculus is indeed a calculus
of realizers. There is a termination side condition (5.1), which enforces that any evaluation of a
recursive function eventually terminates, the coverage side condition (5.2), which ensures that
all cases are always covered, the strictness side condition (5.3), which enforces determinacy,
and eventually the subsumption side condition (5.4), which guarantees soundness of lemma
application. A summary of all rules can be found in Appendix A.

The meta-logic is general enough to represent any of the proof terms from Chapter 3 and
Chapter 4, such as the entire development of the Church-Rosser proof of ordinary reduction.
It is powerful enough to represent the theory of cut-elimination, meta-theoretic properties of
programming languages, especially functional and logic programming languages, compiler cor-
rectness, and examples from category theory. Not only are all theorems representable in the
meta-logic, but they are also automatically derivable, as we will discuss in Chapter 8. A more
detailed account on which theorems have been proven automatically will be given in Section 8.5.

M.\ has several limitations. The first limitation stems from the observation that the rep-
resentation power of the meta-logic is directly connected to the representation power of the
underlying logical framework. Reasoning about imperative programming languages is not very
well supported by the logical framework LF due to the lack of an elegant encoding of state. First
promising results have been achieved with an extension of LF to a linear logical framework LLF
[CP96], which treats memory cells as resources. Resources disappear whenever accessed. It is
during the reassumption phase, that the value of a resource can be changed, which makes the
linear logical framework a prime candidate for modeling imperative languages. A generalization
of M\ to a meta-logic for a linear logical framework such as LLF has not been carried out yet,
but it will be discussed briefly in Section 9.1.2.

A second limitation of the meta-logic M\ is that it currently cannot represent any meta-
logical arguments which require a proof by logical relations (also Tait's method). When applying

141

142 5.8. SUMMARY

this method, one normally defines semantically a relation P, and in order to show that a judg-
ment J can be transformed into a judgment J', we show that each derivation of J satisfies P and
furthermore that each derivation satisfying P can be transformed into a derivation satisfying
J'. This technique is used for example in the canonical form theorem for the simply-typed A-
calculus. Ai£ lacks mechanisms such as for example quantification over substitutions to express
commonly used logical relations P.

A third limitation is that M\ is restricted to 112-formulas, and that it offers only a limited
number of logical connectives. Many theorems have natural formulations, which fall outside this
fragment, prompting the user for auxiliary constructions.

This concludes the presentation of the meta-logic .M^, and we continue with the presentation
of a type-preserving operational semantics, which we use to show that all proof terms are total
functions.

142

Chapter 6

Operational Semantics for Mt

6.1 Introduction

The proof term calculus M\ is designed with the idea in mind that all proof terms correspond to
total recursive functions called realizers, summarizing derivations and witnessing the soundness
of the meta-logic M^- The soundness proof itself is long and introduces many definitions, a
sophisticated matching algorithm, a big-step and a small-step semantics. Therefore we have
decided to break it up into two chapters. This is the first chapter, and its goal is to demonstrate
how proof terms are interpreted as recursive functions and how they can be executed. In future
work we will investigate independent applications of M2 as a programming language. In the
next chapter we show that all functions in M.^ are realizers when satisfying the termination
side condition (5.1), and the coverage side condition (5.2). The reader who is more interested
in the practical applications and results is invited to skip these two chapters and to continue
reading Chapter 8 which discusses an implementation of M.% as part of the Twelf system.

This Chapter is organized as follows: In Section 6.2, we directly begin with the technical
discussion; we formally introduce substitutions, abstractions, subordination, and other neces-
sary concepts, and we derive basic properties such as weakening and substitution lemmas. In
Section 6.3 then, we present a syntactic criterion for context schema subsumption necessary for
sound lemma invocations. The matching algorithm for case constructs is defined in Section 6.4
as part of the big-step semantics which is described in Section 6.5. Finally, we conclude this
chapter with a summary in Section 6.6.

6.2 Preliminaries

Proof terms are recursive functions and they operate on LF objects. Because of the different
variable concepts used to define M.% , there are many different notions of substitutions and
substitution applications to be considered. Generalized substitutions for example enjoy the same
properties LF substitutions introduced in Section 5.2 enjoy; assumptions variables correspond
directly to LF variables, and variable blocks are mapped to lists of LF variables. The main
difference to LF substitutions is that generalized substitutions carry additional information
about the boundaries of variable blocks.

This section is organized as follows: We first discuss basic properties of standard LF substi-
tutions in Section 6.2.1 and issues related to hypothetical arguments in Section 6.2.2. We then

143

144 6.2. PRELIMINARIES

derive a set of weakening lemmas, for formulas, proof terms, generalized, and meta-contexts in
Section 6.2.3 which are required for the upcoming technical discussions. Likewise we prove a
variety of substitution lemmas for formulas and proof terms in Section 6.2.4.

6.2.1 LF

The construction of M.2 relies on the fundamental property of LF that canonical forms exist, as
shown in Theorem 2.6. But there are also other properties, which are equally important for the
sake of the formal development. The first property is the weakening property. An object M (type
family A) remains well-typed (well-kinded) under any extension of the context T. Formally, we
write r < r" if V results from interspersing T with arbitrary (but always well-typed) variable
declarations. Note, that we implicitly assume that I- T ctx and I- V ctx holds.

Lemma 6.1 (Weakening for LF)

1. IfThM:A
and T < T'
then r' h M : A

2. // T h A:K
and r < V
then V \- A : K

Proof: by induction on the typing derivations. D

Similarly, there is a substitution lemma, which expresses that the typing relation is stable under
substitution application. The definition of substitution application to LF objects, LF types, and
LF kinds is omitted from this thesis.

Lemma 6.2 (Substitution property of LF)

1. IfT\-M:A
and V \- a : Y
then T' h M[a] : A[a]

2. If T h A : K
and V h a : T
then V H A[a) : K[a]

Proof: by induction on the typing derivations. D

This concludes the presentation of all properties of the logical framework LF necessary to carry
out the formal analysis of M^-

144

CHAPTER 6. OPERATIONAL SEMANTICS FOR MJ 145

6.2.2 Abstraction

Abstraction is an operation which is used for example in the definition of the Lnew-rule in
Section 5.4.4.

(SOME d. BLOCK C2)
L € S * H a : Cx * h p =a [a]C2 *,pL;Ah*';A'
 . i_new

f;AhnpL.(*';A')

Abstraction formalizes how results of applying the induction hypothesis are interpreted after
an extension of the world is discharged. Hypothetical arguments typically first introduce new
assumptions, then apply induction hypotheses or possibly lemmas, and eventually discharge the
new assumptions. It is the goal of this subsection to give a formal account on how to interpret,
for example, the result of the induction hypothesis after the last step.

Recall the walk through the proof of the reflexivity Lemma 4.3 in Section 5.4.4. In order to
prove the case for "lam" we had to introduce new assumptions. More precisely, we introduced a

new parameter block in form of a variable block [x : term T,u:x ==> x)L. After a few further

reasoning steps, we demonstrated the existence of an LF object P : (E' x) => (E' x), and
three meta-assumptions, represented as the meta-assumption list A'(2) on page 117.

*'(2) = P : (E' x) =±> (E' x)
A'(2) = x0 eVE:termT.3D:E =^> E.T,

xi E3D: (E' X) =U {E' X).T,

x2 e T

Let us first concentrate only on \I/'(2). What does it mean to reason hypothetically? It
simply means, that P is the representation image of a derivation T7, which possibly uses two
assumptions x and u represented as rxn = x and ru'1 = u as already shown in Equation (4.1),

keeping in mind that (x : term T,u:x => x)L is assumed.

r ~i
 U

1
X =^> X

V

;' =k> e' = Ux : term rrin. Uu : x =^> x.(E'x) =h {E'

By abstraction we refer to the process that calculates the right hand side of this equation

from the variable block (x : term T,u : x =>■ x)L and the type of the new assumption

(E' x) =h (E' x): We write P : U(x: term T,u:x =U x).(E' x) =U (E' x) for this
operation. Here is a preliminary definition of the abstraction operation Up. A, the same we have
already presented earlier.

U-.A2 = A2

U(x:Aup).A2 = Ux:Ai.{Up.A2)

Note, that while the abstraction algorithm executes, the hypothesis x and u are transformed into
LF variables x and u. Thus, abstraction simultaneously and implicitly removes the "underlines"
from variable names. This operation is rather conservative. On the one hand, it safe because

145

146 6.2. PRELIMINARIES

no variable cannot escape its scope. On the other hand, it is conservative, because it is possible
that x can never occur in Up. A2; as for example no term x can ever occur in the definition
of a type "tp". This is impossible as an easy inspection of the signature in Figure 2.2 shows.
Abstracting over x in this situation certainly does not lead to an unsoundness, but it may lead
to an incompleteness, as we can easily demonstrate using the proof of Lemma 4.12. Thus,
abstraction should be able to strengthen the variable block that is abstracted by removing all
declarations that cannot occur in the type.

In the example the hypothetical argument introduces two related parameters: x is an atomic
term and y is a term of the same type. Therefore, the regular world extension consists of
parameter blocks of the following form: (x : atm Ty, y : term Ty)L. In the proof of Lemma 4.12
the induction hypothesis is applied in an extension of the current world with the result that
there exists a term of type T2. T2's existence is hypothetical, therefore we use the abstraction
algorithm to abstract, x and y. However, using the algorithm in its current form, the result is
an object of type "atm Ty —> term Ty ->• term T2'

!, even though x is a semantically meaningless
abstraction. Consequently, we will refine the abstraction algorithm to ignore any semantically
meaningless assumption. Only if abstraction ignores the ux : atm Ti" hypothesis, the proof can
be easily completed as we have already informally argued at the end of Section 4.2.3.

The static analysis of the signature which summarizes which objects of which type can occur
as subobjects in objects of some other type is satisfactorily summarized by the dependency
relation, or subordination relation [Roh96, Vir99]. Virga has shown that if a type Ay is not
subordinate to type A2, then it is impossible, that any object of type Ay occurs as a subobject
in any object of type A2. As a matter of fact, we can partition type families into equivalence
classes modulo subordination and define a partial order on those classes based on subordination.
For our purposes, we completely adopt the definition and notation of the subordination relation
from Virga [Vir99], Chapter 5, and we write Ay -<s A-> iff Ay -<£ A2 or A\ -<^ A2. Indeed by
Corollary 5.2.2 in [Vir99] we learn that if Ay ^v A2 then no variable x : Ay can occur freely in
any object of type A2. Translated into our setting we obtain the following lemma.

Lemma 6.3 (Subordination)

1. If At fa A2

and Ty,x : Ay,T2\- M : A
thenTi,T2 \-M : A

2. If Ay fa A2

andTy,x: Ay,T2 h A : K
then Ty,Y2 h A : K

Proof: see [Vir99], Corollary 5.2.2. D

This lemma only holds for objects which are valid in regular world extensions that conform with
the subordination relation. In our situation it is hence important, that the signature and the
context schema bound by any general formula do not invalidate the subordination relation. All
one has to do is to check all dependencies introduced by the LF-types of the BLOCK-component
of a block schema. More precisely, we write -<s for the subordination relation induced by a
context schema S. In order to guarantee soundness of M\ we must attach a side condition to
the rule generalR.

146

CHAPTER 6. OPERATIONAL SEMANTICS FOR Mt 147

...: • Hs)cHs) (6.1)

Without loss of generality, we can assume that this side condition is always satisfied for the
set of meta-theorems and proofs, we are interested in, and hence we drop the subscript and write
only -< instead of -<£• Inspired by Lemma 6.3, we refine the abstraction operation from above
by defining it for arbitrary LF (sub-)contexts. The reader should keep in mind, that abstraction
is an LF-level operation which expects an LF type as argument and computes a new abstracted
LF-type. Likewise we define an abstraction operation for objects by building A-closures in a
very similar way.

Definition 6.4 (Abstraction)

1. Type-level abstraction:

U-.A2 = A2

U(x:Aur).A2 = UT.A2 ifA17^A2

U{x:Ai,r).A2 = Ux:Ai.{nT.A2) */ Ax -< A2

2. Object-level abstraction: Let M be well-typed of type A2

X-.M = M
X(x:AuT).M = XT.M if Ax ■£ A2

\{x:Al,T).M = Xx-Ax. {XT.M) if Ax < A2

It remains to show that the abstraction algorithm is well-defined. But this is an easy consequence
from Virga's results. The statement of the theorem relies on

Lemma 6.5 (Single assumption abstraction)

1. For all contexts Y\
«/ri,r2 K^4 : type
then rx hnr2.^l : type

2. For all contexts T\
ifTur2hM:A
then Ti h Ar2.M:nr2.^

Proof: by induction over T2 (in part 1) and T2 (in part 2), using Lemma 6.3. A detailed proof
can be found in Appendix B.l.l. D

LF-level abstraction ignores semantically meaningless parameter declarations, which can
provably never occur in the subject of abstraction. Meta-level assumptions on the other hand
are treated differently. In the example above recall that the assumptions in A'^ are also being
abstracted over the same block variable. But on the meta-level, at least in this thesis, we
respect parameter block boundaries and do not omit any semantically meaningless parameter
declarations. Thus, abstraction translates directly into the application of the inference rule RII.

147

148 6.2. PRELIMINARIES

In this subsection so far we have described how to execute abstraction for single LF-
assumptions and for single meta-assumptions. In the remainder of this subsection we gener-
alize abstraction to extensions \&'; A' as used in the Lnew-rule. As example consider again the
reflexivity lemma for parallel reduction from above. In this special case we can simply iterate
through \I/'(2); A'(2) and repeatedly apply the abstraction operation which eventually results in
$'(1); A'^1). The reader should be warned, the general case is more complicated.

qj>(i) = p : Ux : term T.Uu:x =U x.{E'x) =U (E' x)

A'(]) = x0 eIi(x:teimT,u:x =U x)L. \/E : term T. 3D : E =U E.T,

X] G U(x : term T, u : x =U x)L. 3D : (E1 x) =L> (£' x). T,

x2 G n(a; : termT,« : x =$> x)L.T

Formally, we write Tip1. (\[>'(2); A'(2)) - vJ/'O; A'^ for this abstraction operation. Clearly,
the abstraction of an assumption variable implicitly changes its type, and this change must be
reflected at the locations the variable in a type. In the example above, the only new declaration
in \I/ is P, and by the formulation of the theorem, P does not occur in any other type as index
variable. Thus this example is only a special case.

We encounter the general case in the proof of the diamond Lemma 4.6. In the pbeta/pbeta-
case for example, we assume the existence of a parameter block (which happens to have the

same form as above: x : term T,u:x ==> x). Here is a snapshot of the additional assumptions
immediately before the abstraction operation is about to take place. For brevity, we only present
the extension to the abstract context.

*'(2) = E' : term T2lR
l : (E1 x) =U E',Er : (Er x) =U E'

A'(2) = ...

Abstraction considers the declaration of E' first. Because of the subordination relation, u is
guaranteed not to occur as a subterm of E'. Using the abstraction operation from Definition 6.4
we obtain as new type for E': "term T —> term T2". It should be clear, that all occurrences of
E' must be replaced by the abstracted version of E', namely E' x.

Next El is abstracted, and a quick inspection of the subordination relation reveals that it

may depend on x and u. Consequently, Rbs new type is Ux : term T. LTw : x =>• x. (E1 x) =>
(E' x) and any occurrences of Rl would have to be replaced by i?' x u, but there aren't any.

Similarly, i?r's abstracted type is lix : term T. liu : x =>■ x. (Er x) =£> (E' x).
In summary, after abstraction we must obtain a new abstract context extension, for which

we write
'(!) = E : term T - term T2,

Rl : Ux : term T. 11« : x =U x. (E< x) =U {E x

Rr :Ux: term T.Uu:x =h x. (Er x) =U (E' x)
A'(]) = ...

and naturally, A'^1' follows from A'^2' by replacing all occurrences of E' by (E' x), followed by
the standard abstraction step for formula as described in Section 6.2.2.

In the general case, the occurrence of a variable might be abstracted over several variables,
possibly over all variables declared by the new parameter block which satisfy the subordination

condition we have described in Section 6.2.2. In the example above, for p = x : term T,u:x =>•

148

CHAPTER 6. OPERATIONAL SEMANTICS FOR Mt 149

x we write (£" p)/E. The notation of E p is introduced to facilitate the presentation. Again,
we loose the underlines of the parameter variables when execution this variable application. It
is defined as as follows.

Definition 6.6 (Variable application) Let E' be well-typed of type A2

E' ■ = E'
E' [x:Aup) = (E' x) p ifAx< A2

E'{x:AuP) = E' p ifAl7ZA2

We begin now with the formal definition of the IlpL. (\&; A) = *'; A' relation. The reader
should be aware, that neither \I>; A nor \I/'; A' are meta-contexts by themselves, they are merely
valid extensions of some meta-context \&o; Ao- Formally, it always holds that

h *O,P
L
,* abstract

$o,PL,^ H A0,Ameta

and the same for the abstracted versions:

h *o, *' abstract
o,' H A0,A' meta

The basic idea of the definition of IIpL. (\I>; A) is therefore to traverse *, abstract it to
\I/', and simultaneously, replace all occurrences of abstracted variables by the their abstracted
counterparts in the rest of ty and in A.

Judgment

Meta-context abstraction: UpL. (vp; A) = *'; A'

Rules

 rempty
n/. (•;•) = •;•

V. ([(£ p)/x]V; [(x p)/x)A)) = *'; A' UpL. (•; A) = •; A'
 rass rmeta

UpL. (x:A,$;A) = x: lip. A, *'; A' UpL. (•; x € F, A) = •; x 6 UpL. F, A'

Meta-context abstraction is used in the definition of the meta logic M2, specifically, for the
definition of the Lnew-rule. When executing a proof term, we calculate an instantiation for those
variable declarations, as we discuss in Section 6.5, and those instantiations must clearly be ab-
stracted accordingly. For obvious reasons, we call this operation meta-substitution abstraction,
and write XpL. (iß; 5) = tp'; 5'. Note that the instantiation is only a tail of real meta-substitutions,
i.e. they are partial in the same sense as meta-contexts are extensions of real meta-contexts, too.

Judgment

Meta-substitution abstraction: \pL. (ip; S) = ip'; 8'

149

150 6.2. PRELIMINARIES

Rules

A/- (•;■) = ■;■

rpempty

rpass rpmeta
XpL. (M/x, t/r, 8) = Xp. M/x, V/; 6' XpL. (•; P/x, 5) = •; ApL. P/x, <*'

The reader might, already suspect that if $'; A' is a valid meta-context and in 'i'',pL\A'
the meta-substitution extension V->;£ instantiates the meta-context extension \I>; A then we can
safely abstract the variable block pL. As result wc obtain a new meta-substitution extension
XpL. (tf>;6) declared for UpL. (\l/; A). This result is one of the basic ingredients to the proofs of
type preservation for the operational semantics.

Lemma 6.7 (Extension abstraction)

1. If£:: tyQ,pL;-\-ipup/p,i>:5 G *,,pL,*;A
and V :: <b0: • b ^l! • G \I>i; •
then *0;- b ViiV'V G #i, #'; A'
andip';S' = \pL.{i/r,6)
and*';A' = n/.(*;A)

2. lfV0,PL;-*-il>i,p/p;Se*i,PL;&
and V :: #0;- b ipi;- G *i;-
then \&o;- ^ V^i!^' G *i;A'
and-;^' = ApL.(-;<5)
<md •; A'= II/A (•; A)

Proof: by induction on 'I'(l), A(2), using Lemma 6.5. A detailed proof can be found in Ap-
pendix B.l.l. D

This concludes our discussion about abstraction and we continue with the presentation of a
few weakening results.

6.2.3 Weakening

The weakening results for LF from Section 6.2.1 generalize directly to weakening results for
meta-level constructs such as generalized contexts, formulas, meta contexts, and proof terms.
To establish these results is the goal of this subsection.

We begin with the presentation of a weakening result for generalized substitutions. If a
generalized substitution has co-domain \[> and ^' extends ty then — as expected — the same
substitution is still well-defined only in the extended co-domain <&'. Similarly to Section 6.2.1,
we write $ < \I/' for \I/' extends * and again, we implicitly assume that b <]> abstract and
b \I>' abstract, ty' stems from \I/ by inserting new assumption variables and variable block
declarations.

150

CHAPTER 6. OPERATIONAL SEMANTICS FOR Mj 151

Lemma 6.8 (Weakening of generalized substitutions)
IfV:: *'h^G*
and *' < *"
then *" h ^> e *

Proof: by induction on £> using Lemma 6.1. D

Recall from Section 5.4.3, that the well-formedness judgment for formulas is defined with
respect to a generalized context \I>. Naturally a weakening result for proof terms implicitly
requires that weakening of meta contexts is admissible which itself relies on a weakening result
for formulas. The last lemma can be easily proven by induction on the structure of the formula.

Lemma 6.9 (Weakening of formulas)
IfVv.mV- F formula
and * < *'
then $'hF formula

Proof: by induction on V, using Lemma 6.1. D

The next goal is to establish a similar weakening result for proof terms. Proof terms may
be open with respect to \I>; A. In particular, proof terms are defined in terms of declarations
D and explicit meta substitutions ip;S for which we show the weakening property first. From
the definition of meta contexts in Section 5.5.2, it follows immediately, that \& is a generalized
context. How shall we define context extensions of meta contexts? We follow the same pattern
as above and say that *'; A' extends \I>; A, if ty < \I/' and A' results from inserting new meta-
assumptions of the form x G F into A. In this case we write *; A < $'; A', where we always
implicitly assume that the left and right hand sides of this notation are all well-formed meta-
contexts. Naturally, the argument that this construction works relies on the shoulders of the
weakening property for meta-contexts.

Lemma 6.10 (Weakening of meta-contexts)
7/D::fhA meta
and * < *'
then $'hA meta

Proof: by induction on V, using Lemma 6.9. D

The weakening lemma for proof terms cannot be proven directly, since they are mutually
dependent on declarations and explicit meta substitutions. Consequently, the generalized form
of the theorem must provide extra cases for those two constructs.

Lemma 6.11 (Weakening of proof terms)

1. IfV::^/;A;E\-PeF
and *; A < *'; A'
then *'; A'; S h P G F

151

152 6.2. PRELIMINARIES

2. IfV:: $;A;ShDG *";A"
and *; A < *'; A'
iÄen $';A';5hZ)e *";A"

5. //£>::*'; A'hi/>;<5e *; A
and *'; A' < *"; A"
then V";A"\-il?;6e 1';A

Proof: by induction on X>(1), X>(2), and X>(3). □

Weakening is an essential property which is used implicitly and explicitly over and over
throughout the entire theoretical investigation of this thesis, especially when we examine the
interaction of substitutions and derivations in the meta-logic M.\ which will be discussed in the
next subsection.

6.2.4 Substitution

Substitutions are omnipresent in our investigation. The subject of the case construct in Sec-
tion 5.6.2, for example, is defined by a pair of explicit substitutions: one which collects instan-
tiations for assumptions and variable blocks, and another which explicitly tracks instantiations
of meta-variables. The first substitution is an generalized substitution, and the second a meta
substitution. Third, there are lemma instantiations. Recall that any proof is parametrized by a
lemma repository S which contains a list of lemmas, not necessarily proven yet, but which may
be used during a meta-proof. All in all, there are three variables concepts and consequently three
different notions of substitutions. In this subsection we are concerned with the application and
interaction of the different kind of substitutions with context Schemas, formulas, abstractions,
and proof terms.

Context Schemas

Context Schemas are abstract descriptions of regularly formed parameter contexts. Every the-
orem is quantified by one outermost context schema. In Section 5.3 for example, we have
specified a precise criterion of how to judge if a parameter block is an instance of a block
schema SOME C\. BLOCK C2. First, all SOME-parameters must be instantiated by well-
typed objects, well-typed in some generalized context \t. This process is referred to as SOME-
instantiation. The parameter block in question must then be «-equivalent to the BLOCK-
construction of this block schema. These two constructions are used in the Lnew-rule. It is this
setting for which we need a substitution property.

Lemma 6.12 (Substitution lemma for context Schemas)

1. If Vx :: $ h a : G\
and *' h ip G *
then *' h a o ijj : C\

2. If * h [a]C = p
and *'!-«/)€*
then *' h [a o <0]C = [ip]p

Proof: by structural induction on V(l) and C(2) using Lemma 6.2. D

152

CHAPTER 6. OPERATIONAL SEMANTICS FOR M% 153

Formulas

The application of generalized substitutions to formulas F[ip] = F' is easily defined.

(Vi:AF)M = Vx:A[rl;]:F[il>,x/x] (sAII)
(UpL.FM = nP

L[^].F[^,p[^]/p] (sAIIP)
(3x:'A.F)[if>] = 3x:A[i/>].F[il>,x/x\ (sEx)

(T)[^j = T (sTrue)
(FiAF2)[il>] = FM] A F2[il>] (sAnd)

It is similarly easy to see that substitution application is sound.

Lemma 6.13 (Substitution lemma for formulas)
IfV-.-.V \- F formula
and V :: *' h ip e *
then *' h F[?/>] formula.

Proof: by induction on V using Lemma 6.2. D

Note, that general formulas are always closed. Therefore they do not have to be considered
for any kind of substitution operation. The careful reader will undoubtedly have noticed, that
substitutions as used for example in the 3R or VL rules are not completely specified. In the
rule 3R, for example we write M/x as substitution, but we really mean idy,M/x. We have
committed to this simplification in order to keep this discussion short and accessible. Finally,
we derive a limited commutativity property for substitutions.

Lemma 6.14 (Properties of substitution)

1. F[M/x}[^]=F[tP,x/x][M[tp]/x}

2. F[p'/pM = F[^p/p}Mp'/p}

Proof: by induction on F. D

Meta assumptions

Meta assumptions lists are lists of possibly open formulas. They are defined with respect to
a generalized context $h A meta. The notion of substitution application to formulas can be
easily generalized to those lists for which we write [ip]A = A'.

[tp]- = • (sassempty)
[il>](x € F, A) = x € F[il>],[iJ>]A (sasscons)

In this definition we use another simple trick in order to facilitate the presentation. Even though
assumption list typically grow to the right, we treat them in the definition as if they do grow to
the left. Even though not necessary here, this trick makes subsequent definitions structural.

Lemma 6.15 (Substitution lemma for assumptions)
IfV :: * h A meta
and V :: *' h V> G *
then *' h [ip]A meta.

153

154 6.2. PRELIMINARIES

Proof: by induction on V using Lemma 6.13. □

Any meta substitution can be extended in such a way that it acts as identity substitution
on any domain extension. Note, that the co-domain must be extended accordingly. This lemma
is trivially true, but it requires some work and a few generalizations because of the complicated
definition of meta-substitutions.

Lemma 6.16 (Identity extension for declarations)

l. If *" h V e $
and h \&, Vl/' m,eta
then $", [$#' h iß, idy G 1>, *'

£ J/P:: *";A"h ^-5e *;A
and h \I>, *' meto
«Aen *", [</>]*'; A" h V, id*'; <J G *, *'; A

3. J/*";A"r-^Me tf;A
and \~ *,*' meta
and *, *' h A, A' abstract
then *", [V;]*'; A", [V>, iaV]A' H V, id*-; <*, »«h' G *, *'; A, A'

Proof: by structural induction on *'(1), T>(2), and A'(3), using Lemma 6.9, Lemma 6.11 (3),
and sabstract, and Lemma 6.13. □

Back in Section 6.2.2 we have discussed how to abstract new meta-assumptions. How does
abstraction interact with substitution application? Essentially, the answer is a generalization of
Lemma 6.14.

Lemma 6.17 (Substitution lemma and abstraction)
mnP

L. (*"; A")) = n(W)P)L. ([</;, MP/PW; [ij>, VI>]PIP, id*»] A")

Proof: by structural induction on p. □

This concludes our presentation of substitution properties for formulas. We continue the
discussion and investigate of how substitutions can be applied to proof terms.

Proof terms

There are two entirely independent notions of substitution application associated with proof
terms. First, there is lemma instantiation. Before a program can be executed, we must guarantee
that it doesn't contain any free meta-hypotheses. Meta-hypothesis can only be instantiated by
general proof terms. Second, there is meta-substitution application which is used for example
when applying a proof term to some argument object. The operational semantics we define
below immediately carries out substitution application; in doing so, it is different from previous
versions of M.2 [SP98] where the operational semantics is defined via environments.

The idea behind lemma instantiation has already been explained in Section 5.7. In the
following we discuss how it is carried out. A lemma repository consists of free meta-hypotheses.

154

CHAPTER 6. OPERATIONAL SEMANTICS FOR Mj 155

By instantiating them with closed general proof terms, we can turn a hypothetical into a non-
hypothetical meta-proof. Formally, we write Q[£] = Q', P[£] = P', and D[£] = D' to apply
the lemma instantiation £ to a general proof term, proof term, and to a list of declarations,
respectively.

General proof terms: x[£]
(box S.P)[£] =

e(x)
box S. P

(iHyp)
(iCtx)

Proof terms: iVar)x[£]
(Az:AP)[£]

(A^.P)[£]
(M,pm

OK]
(letP>inP)[£]
(fixEF.PM

<Pi,P2)[£]

=

X

Ax : A. P[£]

ApL-P[£]
(M,P[£])

0
let£[£]inP[£]
MXGP.P[£]

(iFun)
(iFunP)

(iinx)
(iUnit)
(iLet)
(iRec)
(iPair)

(case (<//;£') of ft) [£] = case (?/>';£') of ft [£] (iCase)

Declarations: •K] = (iDone)

«* :A, yGP) = P,r>)[£] = (x:A,y€F) = m^] (iSplit)
(x eF = PM,D)[£] = x G P = P[£] M ,£[£] (iApp)
(xGP = Pp,£)[£] = xef = P[C] P, 0[fl (iAppP)

[vpL.Dm = vpL.D[£] (iNew)
(x eF = nlP,D)[$ = X G P = TTi P[t] ,00 (iPil)
(x GF = 7r2P, £>)[£] = XGP = 7T2P[£],P>[£] (iPir)

(yef = lemma Q,D)[(] = y G P = lemma QKL-DKI (iLem)

And, as one might already expect, the application of lemma instantiations is sound:

Lemma 6.18 (Soundness of lemmas instantiation)
IfV:: #;A;ShPGP
and V :: H' h £ G E
i/ien*;A;H'hP[£] GP.

Proof: by induction on V. D

Hypothetical meta-proofs can be turned non-hypothetical by providing general proof terms
for each meta-hypothesis. As a matter of fact, all future considerations involving the operational
semantics require S to be empty. In particular, only if they are defined with respect to an empty
lemma repository, programs P and general programs Q are executable.

In the remainder of this subsection we are concerned with the application of a meta-
substitution tp; 8, which replaces variables in \I> and meta-assumptions in A simultaneously.
Meta-substitutions can only be applied to programs and declarations. Clearly, there is no need
to apply them to general programs since they are always closed by definition. In addition they
need not be applied to cases ft because of the choice of case subjects; a case subject is an explicit
substitution which absorbs all substitution applications by composition while shielding the list
of cases ft from substitution application. Only when a case construct is operationally executed,
i.e. one of its cases is selected and matched against (see Section 6.4), the newly derived matching

155

156 6.2. PRELIMINARIES

substitution is applied to its body. For the application of a meta-substitution to programs we
write P[ip; 8} = P' and to declarations D[ip;S] = D'. Both judgments are mutual recursive and
defined by the following rules.

The construction of id»];' and id^y in the rule sLet can be easily calculated while applying
i])\ 8 to D. In essence, it summarizes all newly introduced assumptions and meta-assumptions
of D[ip;6]. Alternatively, we could have made the calculation of id«],/ and id^y explicit which
would have noticeably cluttered the presentation. Note the use of meta-substitution composition
in the rule sCase, as described above. The composition itself is described by Definition 5.19.
The subject of case in rule sCase is an explicit substitution, and substituting into a case object
reduces to substitution composition.

x[^8]
(Ax:A.PM;5]

(XpL.P)[tJ]
(M,P)[V;;<J]

OhM
(let D in P)[4>;5]

(pxGF.P){^8]

0>i,P2>hM
(case (ij/; 8') of Sl)[il);6\

#;<$]
({x:A,yeF)=P,b)W>;S\

(xeF = PM,D)[rp;S\
(x£F = P p,D)[ijr,S]

(upL.DM;8)
(xeF = irlP,D)[i!>;8\
(X£F = TT2P,D)[^8]

(y G F = lemma Q, £>)[-</>; 8}

8{x) (sVar)
Ax : A[I/J]. P[ij), x/x; 8} (sFun)
\(ty]p)L.P[rl>,'[il,]p/p;8\ (sFunP)
(MM,P[V^]} (slnx)
0 (sUnit)
let D[i/r,S\ in P[^,id*»;Ä,idA'] (sLet)
where \I/'; A' are newly introduced assumptions by D
px G F[i/)] .P[%p; 6, x/x] (sRec)
(Pi[il>;S\,P2[il>;'s\) (sPair)
case (ip'; 8') o (ijj; 8) of $7 (sCase)

(sDone)
((x : Atyly G F[il>,x/x}) = P[xj>; 8], Ph/>,x/x; 8,y/y]) (sSplit)
(x G F[iP] = P[V;; 8} Mty], D[i/>; 8,x/x]) (sApp)
(x G Fty] = P[V; 8} Mp, Dty; 8, x/x]) (sAppP)
v{[rl>]p)L.D[il>,W\plp;8\ (sNew)
(x G F[il>] = 7T] P[^;<J],£>[^;<S,x/x]) (sPil)
(x G F[i/>] = 7T2 pfv^^^iV^^x/x]) (sPir)
(y G F = lemma Q, Dty>; 8, y/y]) (sLem)

Clearly, closely related to the soundness property of meta-substitution application is the
soundness of meta-substitution composition. But before we address the formulation of the
substitution lemma, we state some very trivial facts on how to access variable blocks and proof
terms in a meta-substitutions.

Lemma 6.19 (Lookup)

1. IfV:: <f>';A'hip;8e *;A
and A(x) = F
then *'; A' h 8{x) G F[$\

2. J/X>::tf';A'l-^;(?e#;A
and pL G *
then there exists a p'L G $'
and [i/)]p = p'.

Proof: by induction on P(l) and V{2). □

156

CHAPTER 6. OPERATIONAL SEMANTICS FOR A4+ 157

Everything is prepared for the proof of the substitution lemma for proof terms: If a proof term P
is well-typed in some meta context \I>; A and there exists a meta-substitution ip; § with the same
domain then it is applicable and P[tp; 5] is a well-typed proof term in the meta-logic. Clearly,
this property is not directly provable, since we must first generalize the lemma to also apply to
declarations and to substitution composition.

With the machinery developed so far at hand, the proof of the generalized substitution
lemma is a simple induction on the various typing derivations.

Lemma 6.20 (Substitution lemma for proof-terms)

1. IfV::V;A\-PeF
andV::^';A'hfad£^;A
then $';A'hP[^;Ä] G F[ip].

2. ;/D::$;Ahöe $"; A"
and P ::*'; A'h </>;£€*; A
then *'; A' H D[ij>; S] G [$(#"; A").

3. IfVl::^2;A2hfa;S1e^1;Al

and V2 :: *3; A3 h V>2! S2 G #2; A2

then *3;A3h (il>i;6i)o(if>2;62) G*i;Ai
and (ipi]5\) o (i/>2; ^2) = (V'l ° ip2>8') for some meta-substitution 5'

Proof: by induction on £>(l),X>(2),X>i(3) using Lemma 6.19, Lemma 6.16, Lemma 5.21,
Lemma 6.2, Lemma 6.14, Lemma 6.12, Lemma 6.17, Lemma 6.23, and Lemma 5.18 A detailed
proof can be found in Appendix B.1.2. D

The third part of this lemma guarantees that the composition of two meta-substitutions as
defined in Definition 5.19 is well-defined.

Corollary 6.21 (Compositions of meta-substitutions)

IfV1 ::*2;A2hVi;<5i G*i;Ai
and V2 :: 1>3; A3 h ip2; $2 G *2; A2

then *3;A3 h (fa; 61) o (fa; 52) G *i;Aj

Proof: Follows directly from Lemma 6.20. D

The next few lemmas are of technical nature. They summarize simple properties needed for
the type preservation proof which are described below. The first of these technical lemmas
guarantees the existence of an identity meta-substitution.

Lemma 6.22 (Identity meta-substitution)
7/ h # abstract
and $hA meta
then *; A \- idy;- G *; •

Proof: follows directly from the rule sabstract. D

157

158 6.3. SUBSUMPTION

And the second technical lemma is a substitution lemma for variable blocks. In essence, it is a
generalization of Lemma 6.2.

Lemma 6.23 (variable blocks convertibility under substitution)
// *' h V e *
and V :: * h p = p'
then *' I- [il>]p = [W

Proof: by structural induction over D, using Lemma 6.2. □

This concludes our description of substitution properties for the various syntactical concepts
defined in M^- Before we begin with the specification of its operational semantics, we discuss
context schema subsumption and matching. Context schema subsumption judges if a lemma
is applicable by examining if the regular worlds in which the caller and the callee are defined
are compatible. Matching is a technique that selects a case from fi and effectively applies it.
Simultaneously, we provide syntactic criteria for two of the altogether four side conditions of the
proof calculus of M.\.

6.3 Subsumption

Proof terms can be interpreted as recursive functions and thus appeals to lemmas corresponds to
functions calls. This feature is supported by M.\ and has been discussed in depth in Section 5.7.
But not every proof can apply any lemma; we must first check, if the regular world extensions
of the caller and callee are compatible: the context schema of the calling realizer must subsume
the context schema of the called realizers, as expressed by side Condition (5.4). In this thesis,
we specify a very simply syntactic criterion for context subsumption, and we leave the design of
more sophisticated criteria to future work.

In general, subsumption is undecidable. The criterion specified here is expressed in form of a
judgment S\ C Si and two inference rides. S\ is the context schema of the caller, S2 the context
schema of the callee;.

subempty subtriv
■CS ScS

If a property is to be proven for closed objects then any other lemma can be applied, and if
the property is to be proven for open objects then only lemmas can be applied which are defined
with exactly the same context schema. Of course, this condition is quite restrictive, but it is
powerful enough to allow the formalization of all lemmas we have encountered in Chapter 4 and
many more.

Lemma 6.24 (Soundness)
IfV::S1cS2

then {Si) C [52]

Proof: by case analysis of V. □

Any refinement of the subsumption relation has to satisfy this soundness property. In the
next section we present another syntactic criterion, called strictness.

158

CHAPTER 6. OPERATIONAL SEMANTICS FOR A4+ 159

6.4 Matching

One of fundamental operations necessary for executing proof terms is matching. Once the
operational semantics encounters a case statement, it must select a case that is applicable. In
Section 5.6.2 we have already informally discussed how this operation is executed. In essence
we have defined a pattern matching operation, where patterns are expressed by substitutions.
A case is applicable, if the pattern matches the current environment.

Having defined pattern-matching for recursive functions in this generality raises the question,
how we can be sure that we can decide if a case is applicable or not. This might sound like a small
technicality, but it is not! In particular, we cannot allow the body of a case to depend on variables
that will not be instantiated by pattern-matching. Informally, we have already addressed this
issue in Section 5.6.2 which led us to the side condition (5.3) associated with the alt-rule. A case is
only then valid, if all variables that may occur in the body are instantiated by pattern-matching.
The side condition (5.3) unfortunately defines only a semantic criterion for which we develop a
syntactic criterion on substitutions called strictness. Intuitively, a substitution is strict, if each
variable from its co-domain occurs in a strict position in the substitution. Strictness extends
the pattern condition as defined by Miller [Mil91] in a straightforward way.

Consider for example an execution trace of a recursive function, where the executing machine
is deciding if the case (\!>' > ip (->• P) E ti is applicable. If n is the current environment, according
to Condition (5.3) we can decide if ip matches n or not. Furthermore, if it matches all variables
in *' will be instantiated. If all variables declared in *' occur in ip in form of a pattern, i.e. each
variable is applied to pairwise distinct local parameters only, the substitution is strict since the
more general operation of pattern unification is decidable [Mil91, DHKP96].

Unfortunately, in our setting, the substitution ip is in general not a pattern substitution. As
an example consider Example 5.16 (page 129). %p2 is not a pattern substitution, because (E\ E2)
is not a pattern; and it is not a pattern because E2 is not a local parameter. As already pointed
out by Virga [Vir99], this observation is quite common when one uses higher-order representation
techniques. For this reason, the decidability results from [Mil91] are not directly applicable to
our setting.

A possible generalization of patterns is already suggested implicitly by Example 5.16. Even
though Ei E2 is not a pattern on its own, the variables E\ and E2 occur elsewhere: specifically,
they occur in form of patterns in the object (app (lam (Xx : term T.E\ x)) E2) which is to be
substituted for E. Matching this term with any other term will either fail (due to a constant
clash), or it will succeed and thereby properly instantiating E\ and E2. We call these occurrences
of E\ and E2 in xf)2 strict occurrences. In the case of success, the non-pattern E\ E2 becomes
then instantiated, it /3-reduces, and the matching algorithm can proceed. In summary, even
though tp2 contains non-pattern occurrences, it can be seen as such as long as there are other
pattern occurrences of the same variable in ip2- A constraint mechanism allows us to locally
reorder matching goals, in order to guarantee that strict occurrences of variables are matched
before non-strict occurrences. This way, we can indeed enforce the decidability of matching, as
long as every variable declared in \&' occurs in a strict position in ip.

This section is organized as follows. First, in Section 6.4.1 we introduce an alternative
formulation of LF based on the spine calculus inspired by [CP97b]. Using spine notation we
introduce a constraint based matching algorithm in Section 6:4.2 and a precise formal definition
of strictness (as syntactic criterion for side condition (5.3)) in Section 6.4.3. Following this
discussion we demonstrate that the matching algorithm is sound (in Section 6.4.4) and complete

159

160 6.4. MATCHING

(in Section 6.4.5) provided that %p, the generalized substitution describing a case, is strict with
respect to its co-domain. Finally we assess results in Section 6.4.6.

6.4.1 Spine Calculus

One of the main drawbacks of the standard formulation of LF for the purpose of matching
and unification is that it is difficult to describe what the head of a term is. Typically, the
head is buried under several applications. However, the rules defining unification or matching
algorithms depends crucially on the head of a term. For instance, failure due to a constant clash

is triggered by examining the head of a term and not its arguments.

Consider an attempt to match two terms (lam (Xx : term T.E x)) and ((app E\) E-?) (we
intentionally insert all typically omitted parentheses). In order to see that these two terms do
not unify we have to traverse several applications written as juxtaposition in order to reach the
heads of the terms. As simplification, it is conceivable to adopt an alternative formulation of

objects, where the head of an atomic object is explicitly exposed, and the arguments are given in
form of a spine. Usually, this notation is used informally, "(lam (Xx : term T. E :?;))" for example
is written in this formulation as "lam • ((Xx : term T. E x): NIL)", where NIL is the empty spine,
and "((app E\) E2)" is written as "app ■ (E\; E2\ NIL)". In this subsection we presuppose the
equivalence of the standard and the spine formulation of LF. For a detailed presentation of
spines and many proofs, the interested reader is invited to consult [CP97b]. Canonical forms of
LF as described in Section 2.4.3 are expressible in spine notation by the following grammar.

Kinds: K ::= type | II.T : A. K
Types: A ::= a ■ S | Ux : A\. A2

Objects: M ::= c ■ S \ x ■ S \ Xx : A. M

Spines: S ::= NIL | S: M

Intuitively, every canonical form can be easily represented in spine notation, but the inverse
does not necessarily hold. The attentive reader might have noticed, that LF terms in spine
notation are always in /3-normal but not necessarily in 77-long form. On the other hand, it is a
simple algorithm which transforms a term in spine notation into 77-long form. For the remainder
of this subsection we assume all objects, types, and kinds in spine notation to be images of
canonical forms.

6.4.2 Algorithm

Using spine notation, it is now quite straightforward to devise a matching algorithm modulo
constraints. Following [Mil91] we express a matching problem by a state formula, and the
matching algorithm is specified by a set of transition rules. As running example throughout this
subsection, consider the proof of the diamond Lemma 4.6 for parallel reduction.

What happens if we apply dia to the term ((Ay : nat.y) x) and twice to the derivation V
which we define below? Note, that this A is the one we have introduced in Chapter 2, and not
the A defined by the logical framework. To make this example more concrete, we assume that
natural numbers are defined. ((Ay : nat.y) x) is valid term with respect to an assumption list

x :: term nat, u :: x => x.

160

CHAPTER 6. OPERATIONAL SEMANTICS FOR Mt 161 2

v =^ y . v plam
l

' x Xy : nat. y =4- Ay : nat. y x
j) .. pbeta

(Ay : nat. y) x =» x

Eventually, dia will terminate and return the common reduct e', and two derivations 7Zl and
1Zr as the following diagram shows.

(Ay : nat. y) x

y \
X X

iz1' ■ ■ nr

V
Not too surprisingly, the result is e' = x and Hl = TV = u. In order to understand the subtleties
and details of this evaluation, we shift our point of view to LF, and follow the evaluation trace.
First we represent the arguments in LF.

r(Ay : nat. y) xn = app (lam (Ay : nat. y)) x

r -i

v
(Ay : nat. y) x ==> x = pbeta (plam (Ay : term nat. Xv : y =$> y.v)) u

Once the evaluation of

dia (app (lam (Ay : nat. y)) x),

pbeta (plam (Ay : term nat. Xv : y => y. v)) u,

pbeta (plam (Ay : term nat. Xv : y => y. v)) u)

has begun, it immediately invokes the matching algorithm described below. As a matter of fact,
with a little insight it is easy to derive from Example 5.16 that the only applicable case is the
case containing ip2- The other three are not applicable because of constant clashes.

We motivate now how the matching algorithm works. The evaluation takes part in a world
that has the following form

$ = (x : term nat, u : x =*> x)L.

In addition recall from Example 5.13, that the case statement is valid in the generalized context

* = T : tp, E : term T, El : term T, Er : term T,Dl : E =U El,Dr : E =^> Er.

Thus, during execution all variables in \1/ become instantiated, and the instantiation is summa-
rized in form of a substitution. As a matter of fact, this substitution is the case subject and takes
the role of a local environment. For the scope of this section we denote it with r\ in order not
to confuse it with the other substitutions which come up at numerous occasions. We continue

161

162 6.4. MATCHING

to denote the substitution describing a case with ip. To make this example more concrete, we
assume that x has type nat.

$ h T] = nat/T, (app (lam (Ay : nat. y)) x)/E,x/El,x/Er,

(pbeta (plain (Ay : term nat. Xv : y =$■ y. v)) u)/Dl,

(pbeta (plam (Ay : term nat. Xv : y =>- y.v)) u)/Dr G *

Once executed, the operational semantics searches through all cases to find one which is appli-
cable. For the purpose of this example, we consider only two cases from Example 5.16: The first
case, which is not applicable, is defined by

V>i =T/T,x/E,x/El,u/D',Dr/Dr

and the second case, which is, is defined by

i>2 = T/T, (app (lam Ex) E2)/E, {E{ E2)/E', Er/E\ (pbeta D\ DU/D1, Dr/Dr.

The three generalized substitutions r], Vi, and x))2 have all the same domain, but quite different
co-domains. The challenge for the matching algorithm is to select an applicable case, i.e. a case
whose co-domain variables can be instantiated by another substitution rf, in such a way, that
the pair tp, rf is a valid decomposition of the original environment ip ° if — V- Clearly if is a
generalized substitution whose domain is <3>, i.e. it can use the same parameters for instantiations
as r], and its domain is the co-domain of if). In our example, the matching algorithm must
construct a $ h rf € ^'2, since x/>2 is the only applicable case. Recall from Example 5.13 that

% = T : tp, Ti : tp, Ex : term Tj -> term T, E2 term T},
E[: term T\ -> term T, E<2 term TuE

r : term T,

D\ : ILx- : termTi.a; =^=> x ->• E\ x =U E\ x,D'2 : E2 =U E[>i
2'

Dr : (app (lam Ej) E2) =U Er.

and consequently

rf = nat/T, nat/T, (Ay : nat. y)/El, x/E2, (Ay : nat. y)/E\, x/E!2,x/Er,

(plam (Ay : term nat. Xv : y => y.v))/D\,u/D2,

(pbeta (plain (Ay : term nat. Xv : y => y.v)) u)/Dr

In the remainder of this subsection we present the matching algorithm which computes such an
rf if it exists, and it reports failure, if it does not. As an example for the later case, consider the
generalized substitution ij>\ from above: the attempt to match

V>i = T/T:lx/E,x/El,iu/D',Dr/Dr

with
r] = nat/T, (app (lam (Ay : nat y)) x) /E,x/E',x/Er,

(pbeta (plam (Ay : term nat. Xv : y ==*>. y.v)) u) /£>',

(pbeta (plam (Ay : term nat. Xv : y =>• y.v)) u)/Dr

162

CHAPTER 6. OPERATIONAL SEMANTICS FOR A4+ 163

fails because of clashes in two places (indicated by the grey backgrounds), and hence an rf cannot
be constructed. Recall, that x and u are not existential variables. They represent a parameter
block and therefore, this case is clearly not applicable.

We begin now with the definition of the matching algorithm which is essentially defined
via a transition relation on state formulas E in a very similar way to [Mil91]. State formulas
are not to be confused with formulas F of the meta-logic M.% as defined in Section 5.3.1. In
the example above, the matching algorithms starts with a state formula 3^'.if;2 ~ ??{T}. The
left-hand side of the derivation can mention the existential variables defined in <!>' whereas the
right-hand side is closed with respect to a generalized parameter context $. More specifically,
we use the notation $ > E to denote a specific state of the matching algorithm.

The matching algorithm begins then to decompose ip and r\ in order to match its components.
This gives rise to new state formulas, which we call universal state formulas and which we denote
with U. Universal state formulas are a conjunction of equations to be solved, equations defined
on objects M\ ss M2, spines S\ « S2, and types A\ K, A2.

The part {T} in the state formula 3*'. ip2 ~ v{~^} represents the here empty constraint
store. Since the matching algorithm postpones goals that lie outside the pattern fragment as
constraints, they must be stored in a special place. A list of constraints is simply a list of still
to be resolved equations, and is consequently represented as the universal formula {U}.

Universal State formulas: U ::= (ip fa rj) A U
I (Vr.Mi faM2)AU
I (VT.Si taS2) AU
I (W.Ai faA2)AU
I T

Existential State formulas: E ::= 3x : A. E | 3pL. E | Ui{U2}
State: T ::= $ t> E

The universally quantified context T proceeding equations of the form Mi fa M2, Si fa S2,
and Ai « A2 is used to represent local parameters and hence the universal quantifier carries
exactly the same meaning as in [Mil91]. Mi, M2, Si, S2, Ai, and A2 are all valid in T. The $
never changes throughout the algorithm, but it is necessary since it characterizes all parameters
that have been introduced by an extension to the world.

The matching algorithm is expressed by a judgment T\ =» T2, which reads as state Ti is
transformed into state T2. As for standard matching and unification algorithms, these rules are
successively applied beginning at an initial state, until a solved state is reached. Overall, this
solved state is $>T{T} meaning, that all equations and all constraints have been satisfactorily
resolved.

Judgment

Match state: Tx

163

164 6.4. MATCHING

Rules

mconst

mlam

mlocal

mglobal

mpat

mnopat

mpar

$ > 3*. (Vr. c • Si sa c • S2) A t/i{C/2}
=» $ > 3*. (Vr. 5] « S2) A C/i{t/2}

$ > 3*. (Vr. Ax : Ai. Mi « As : A2. M2) A fA{C/2}
=» * > 3*. (VT. i4i w A2) A (VT.xi^i.M! «M2)A C/i{C/2}

$ > 3*. (VT. x • Si « .T • S2) A C/i {f/2}
=> * > 3*. (VT. 5i « 52) A Ui{U2}

if a: :AeT

>3.(VT.a;-S'i tax-S2) A t/i{[/2}
=> $>3tf.(VT.5, ^S2)A £M^}

if ar : A G p and pL G <&

$>3*.(Vr.a:-1S,i « Af) Af/i{[/2}
=» $ t> 3*i. [A.TTJ : ^i ... zn : An.M/x]{3V2- U\ {U2})

if * = *!, .T : A, *2 and Si = (x-i?:„) pattern
and Xj. : Ax; G F, for all 1 < i < n
and all free: variables in M are among x.\ ... J;„

$ > 3*. (Vr. a; • Si « M) A C/j {t/2}
=> $ > 3*. [/] {(Vr. .7: • Si « M) A C/2}

if * = *i, a: : A, *2 and Si is not a pattern

$>3*.(Vr.£I-S] ^yi-S2)AU1{U2}
=> $ > 3*]. [p'/p](3*2. A,«yli...A A, « A; A Vr. Si « S2 A t/i{E/2})

if * = *], ph, *2 and p = a^ : A\ ... x^ : Av

and $ = $!, p'L, $2 and p' = y^ : ^ ... y^ : A',
and 1 < i < 7i

mfam :: $ > 3*. (VT. a ■ Si « a • S2) A C/i {t/2}
=► $>3*.(VT.5,i«52)A J7i{£/2}

mpi :: $ > 3*. (VT. ILT : A,. A\ « HE : 42. ^2) A C/j{[/2}
=> *>3*.(Vr.A1 « A2) A (Vr,.x-: Aj.^ «^) A tA{t/2}

mnil

mapp

:: *>3*.(VT.NIL«NIL) A Ui{U2}
=> $>3*.t/i{£72}

:: $D>3*.(Vr.Mi;Si «M2;S2) A C/]{f/2}
=> * > 3*. (Vr. Afi « M2) A (Vf. Si « S2) A C/i{f/2}

mempty ::

mcons

=> $>3V.Ul{U2}

$t>3$.{i/j,Mi/x&T),M2/x) A C/i{C/2}
=> $>3*.i/) R; 7? A Mi « M2 A C/i{C/2}

164

CHAPTER 6. OPERATIONAL SEMANTICS FOR Mj 165

Note, that all but three rules are direct reformulations of the pattern-matching (pattern-
unification) rules as presented in [Mil91]. First, mglobal is a new rule, because of the presence
of parameter blocks, which were not present in Miller's investigation. Second, since we are
concerned with a standard matching problem no explicit pruning rule is necessary. Instead,
pruning is hard-wired into the mpat-rule. And third, since our matching algorithm is applicable
to problems outside the pattern fragment, the mnopat rule is designed to postpone matching
goals. If S is not a pattern, the equation x ■ S RJ M is postponed and added to the constraint
store. The reflexive and transitive closure of single transition steps is denoted by =^- .

Tl =* T2 T2 =^ T3
 mrefl mtrans
T =» T Ti ==» T3

Due to the presence of constraints, we are proposing a two-step matching algorithm. First,
the matching algorithm is invoked with the initial state until it reaches state T{U} for some
universal formula U representing constraints. Second, the matching algorithm starts in U{T}
and continues until the solved state T{T} is reached. Formally, we write h T matchable, if such
a sequence of transition steps exists.

T =£» $>T{U} $>[/{T} =^ $>T{T}
 msuccess

h T matchable

Clearly, the solved state T{T} does not contain any information about the form of the
solution substitution — that is the rf in the example above — but once it is formally derived
that h T matchable holds, it is simple to transform its derivation into a matching substitution
as we discuss in Section 6.4.4. More general, we say that a state is solvable iff there exists a
substitution rf which makes all equations contained in the state equal using ßrj equality.

Definition 6.25 (Solution)

rf is a solution of ijj RJ rj AU iff tp o rf = r\ and rf is a solution of U

rf is a solution of (VT. M\ RJ M2) A U iff M\ [rj', idr] = M2 and rf is a solution of U

rf is a solution of (VT. A\ K, A-I) AU iff Ai[rf, idy] = A2 and rf is a solution of U

rj' is a solution of (VT. S\ ss S2) A U iff Si[r}', idr] = S2 and rf is a solution of U

rf is always a solution of T

rf is a solution of 3*. C/i{C/2} iff $ h rf 6 "f and and rj' is a solution of U\ A U<i-

rf is a solution of $ > E iff $ h rf G $> and and rj' is a solution of E.

As we discuss in Section 6.4.4 the matching algorithm is sound, i.e. if T = $ > 3$'. ip fa
rj A T{T} and h T matchable than T is also solvable, but it is not necessarily complete. On the
other hand, if we restrict T to be a strict matching problem (see Section 6.4.3), completeness
also holds. This is shown in Section 6.4.5.

165

166 6.4. MATCHING

We return to the example from above and show the matching algorithm in operation. Recall,
that we try to match ip2 with r\. In order to simplify the presentation, we elide the prefix $>E]\I/2.
throughout this exposition.

T/T, r^/T,

(app (lam Ei) E2)/E, (aPP (lam (XV : r^- V))
X
)/

E
,

(EiE2)/E
l, „ */&,

Er/Er, ~ x/ET, 1 /
(pbeta D[D'2)/D\ (pbeta (plain (Ay : term rTn. Xv : y =U y. v)) u)/D',

^ IU (pbeta (plain (Ay : term F
T~

[
. Xv : y => y.v)) u)/Dr

After repeated applications of mcons, the substitutions is decomposed into several smaller equa-
tions.

T « rrn

A (app (lam E\) E2) fa (app (lam (Ay : rTn. y)) x)
A (Ei E2) « x
A Er ta x (6-2)

A (pbeta D[D2) fa (pbeta (plain (Ay : term rrn. Xv : y => y.v)) u)

A Dr fa (pbeta (plain (Ay : term rrn. Xv : y => y.v)) u){T}

Starting from top to bottom, each equation is solved. The first equation is removed by mpat
with rrn/T.

(app (lam E\) E2) ~ (app (lam (Ay : rT~*.y)) x)

A (Ei E2) « x
A Er fa x

A (pbeta D\ D2) ~ (pbeta (plain (Ay : term rrn.Xv : y =>■ y.v)) u)

A Dr fa (pbeta (plain (Ay : term rrn. Xv : y => y.v))u){T}

Likewise after a few applications of mconst, mnil, mapp — ignoring the spine notation — and
mpat, the new first equation is solved yielding (Ay : rrn.ij)/E\ and x/E2 which simplifies the
matching problem to

X « X

A Er fa x

A (pbeta D[D2) « (pbeta (plain (Ay : term rTn. Xv : y ==> y.v))u)

A Dr fa (pbeta (plain (Ay : term rTn. Xv : y => y.v)) u){T}.

One transition of mglobal yields

Er fa x

A (pbeta D[Dl
2) ss (pbeta (plain (Ay : term rTn. Xv : y ==>■ y.v))u)

A Dr at (pbeta (plam (Ay : term rrn. Xv : y =► y-v)) u){T}.

and several applications of mpat, mconst eventually solve the entire matching problem. Note
that even though (E\ E2) in state (6.2) is not a pattern the instantiation of E\ and E2 in

166

CHAPTER 6. OPERATIONAL SEMANTICS FOR A4+ 167

state (6.3) brings it back into the pattern fragment. That's why a solution of the problem is
possible without the generation of any constraints. The situation is entirely different if the
equations in the state (6.2) are reordered, a scenario which cannot be excluded.

T sa rrn

A (Ei E2) w x
A (app (lam E\) E2) Ft (app (lam (Ay : rrn. y)) x)
A Er « x

A (pbeta D[D2) ~ (pbeta (plam (Ay : term rrn. Xv : y =*► y.v))u)

A Dr Ft (pbeta (plam (Ay : term rrn. Xv : y =£- y.v)) u){T}

The first equation is solvable by mpat, as above, but the second is not. As a matter of fact, the
matching algorithm will postpone it as constraint using the rule mnopat.

(app (lam Ex) E2) Ft (app (lam (Ay : rrn.y)) x)
A Er Ft x

A (pbeta D[Dl
2) Ft (pbeta (plam (Ay : term rr~1. Aw : y ==> y. v)) u)

A Dr Ft (pbeta (plam (Ay : term rrn. Xv : y =4> y. v)) u){(E\ E2) Ft x}

Eventually, it will continue as above, solving all other equations by successively instantiating
existential variables until it arrives in state

T{x Ft x}.

What is the matching algorithm trying next? Obviously this state is not in solved form because
the constraint list not empty. In order to solve it, the algorithm attempts to solve

x Ft x{T}

and certainly it succeeds by mglobal. Finally, as expected, by msuccess we deduce that the
original matching problem is solvable.

Clearly, in the general case, the matching algorithm cannot be complete. This hinges on the
fact, that in the second pass, when the matching algorithm attempts to solve the constraints, new
constraints might arise. Even though in theory possible, this situation does not come up in any of
our examples and experiments. There are at least two ways to rectify this incompleteness. First,
one could try to generalize the matching algorithm to a bigger set of matching problems, but
the reader should be warned that this is not a simple endeavor: higher-order matching problems
only up to third order are known to be decidable [Dow92]. Second, one can restrict the set of
matching problems. On the one hand by only considering problems from the pattern fragment
is too restrictive as we have seen in this section. Higher-order encodings typically fall out of
this fragment. On the other hand, the strict fragment of matching problems that we discuss in
the following section accommodates significantly more and for our purposes sufficiently enough
matching problems. Below we characterize this strict fragment and show that the matching
algorithm restricted to this fragment is decidable, sound, and complete. Unification on the
other hand might not be decidable any more.

167

168 6.4. MATCHING

6.4.3 Strictness

How can we restrict the set of matching problems in order to make the matching algorithm from
Section 6.4.2 complete? Recall that the algorithm proceeds in two phases. In the first phase it
tries to solve all immediate goals and it postpones all non-pattern goals as constraints. In the
second phase it then attempts to solve those constraints one after the other.

In the first phase existential variables are instantiated by the mpat-rnle. One of its precon-
ditions is that the variable is the head of a pattern. Its spine must be a list of pairwise different
local parameters. In order to simplify this presentation we introduce an abbreviation for pattern
spines and write r h S pattern. If the existential variable does not occur in form of a pattern,
the matching goal is postponed as a constraint by the mnopat-rule.

On which problems is the matching algorithm incomplete? The answer is easy. There
is absolutely no guarantee that the second phase does not introduce new constraints whose
solution would require a third pass. Likewise a fourth or fifth pass might be necessary in order
to resolve all constraints. Some constraints can never be resolved.

One way to avoid multiple (more than two) runs of the algorithm is to impose restrictions
on the matching problems to be considered. Miller for example has established the pattern
restriction on unification problems, which guarantees decidability of pattern matching and pat-
tern unification by enforcing that constraints can never occur. Therefore only one pass of the
matching algorithm is necessary. In this work, we relax the pattern restriction to strictness,
where we allow constraints to occur, but we require that after the first pass of the matching
algorithm all existential variables are instantiated, which in turn means that after the first pass
is completed all constraints are ground as the example in the previous section shows.

For the pattern fragment, it is required that every occurrence of every existential variable
occurs as the head of a pattern. For the strict fragment, we only require, that there is at least
one occurrence of every existential variable which occurs as the head of a pattern. Note that
this is a dramatic generalization of the pattern fragment. Intuitively matching against this one
occurrence is guaranteed to succeed and, as a side effect, all other occurrences of the same
variable are instantiated thus removing all non-pattern occurrences of the same variable by the
reduction rules defined for LF.

The idea behind the strictness restriction is hence as follows: Consider a case (*&' > ij) !->■ P)
in a list of cases ft. We say that ij> is strict in \E'/, if every variable x : A occurs as a pattern some
place in ip. Moreover to identify variable blocks, at least one parameter x : A of every (pl) £ Vl/'
must also occur as pattern somewhere in i\). Note, that generalized substitutions only allow
variable blocks to be replaced by variable blocks, and therefore one strict parameter occurrence
of an entire parameter block already signifies a match of the others.

Informally a proof of strictness of V; exposes the path from the root of a term to a strict
occurrence of each variable in \I/'. This path leads through the substitution %p, possibly through
LF-objects, LF-types, and very likely through LF-spines. By following this path one eventually
arrives at a variable occurrence which is guaranteed to satisfy the side condition of the mpat-rule.

Example 6.26 (Strict variable occurrences) Consider the two substitutions from Exam-
ple 5.16, i/)\ and ip2- The grey backgrounds behind the variables denote strict occurrences. In
addition, there are strict occurrences of other variables which occur implicitly in A-binders or in
omitted arguments which we do not show here.

</>i = T IT, x/E. x/El,m/Dl,W/Dr

168

CHAPTER 6. OPERATIONAL SEMANTICS FOR Mt 169

1P2 = \T /T, (app (lam 'Eh) \E2)/E, {Ex E2)/El, Er /Er, (pbeta D{ Dl)/Dl, Br jDr

In general there is no unique proof that a substitution ip is strict in its co-domain.

The main consequences of the strictness restriction are that pattern-matching is sound,
complete, decidable, and yields sound solutions. That is, for the strict fragment of matching
problems we can indeed guarantee that side condition (5.3) is satisfied.

For all r\ ($ h r\ E \&) there exists a unique rf (<& h rf G \&') s.t. r\ = ip o rf

Section 6.4.4 and Section 6.4.5 prepare the proof of this result which is summarized in Theo-
rem 6.36. We begin now with the formal presentation of the strictness criterion.

On the top-level we write * h ip strict in order to express that ip is strict in \E» as described
above. Top-level strictness is expressed in terms of substitution-level strictness for which we
require that a variable x occurs in a strict position in ip. It is expressed by the judgment
\-x ip strict.

The three judgments defining strict variable occurrences in objects, types, and spines are
mutually recursive. Their definition is very similar to [PS99a]. Each of the judgments is defined
relative to a context of local parameters I\ We write V \-x M strict, V \-x A strict, and T \-x

S strict for the strict occurrence of a variable x in M, A, and S, respectively.

Judgment

Top-level strictness: ^i \- (^2 > ip) strict
Substitution-level strictness: \-x ip strict
Generalized context strictness: \-x ty strict
LF-level strictness for objects Y \-x M strict
LF-level strictness for types Y \~x A strict
LF-level strictness for spines Y \-x S strict

Rules The top-level strictness judgment iterates through all declarations in \I>, and guarantees
that each assumption variable occurs in a strict position in ip (stass), and at least one parameter
declaration of every variable block also has a strict occurrence (stblock). stdone is the base case
of the iteration.

stdone

stass

• h (* t> ip) strict

*i H (i : A, \1>2 > ip) strict \-x ip strict

$i,i:Ah {$2>ip) strict

*i h (x : A, *2 > ip) strict hx *2 strict
 ■ ; ■ stass'

$i,x : A \- (\&2 >ip) strict

{x: A) e p $ih {pL, *2 > ip) strict \-x ip strict

*l,pL h (#2>V0 strict

(x:A)Gp *i h {pL,^2>ip) strict \-x *2 strict

*i,/9L \~ (^2>ip) strict

169

stblock

stblock'

170 6.4. MATCHING

Each deduction of the remaining four judgments witnesses a strict occurrence of a variable x
indexing the judgment, x occurs in a strict position in a substitution if it either occurs in a
declaration of the form M/x (stsubassyes) or p'/p (stsubblockyes).

• \-x M strict \-x V; strict
stsubassyes stsubassno

\-x V>, M/y strict \-x %/), M/y strict

(x : A) G p' \-x xjj strict
stsubblockyes stsubblockno

\-x ip, p'/p strict \-x iß, p'/p strict

x occurs in a strict position in a generalized context if it occurs in the type of some declaration.

• \-x A strict hT <!' strict
stctxassyes stctxassno

\-x f, y : A strict \~x *, y : A strict

(x:A)£p ■ \-x A strict K,. * strict
 stctxblockyes stctxblockno

\-x $,pL strict \-x *, pL strict

The inference rules defining the remaining three judgments are all mutual recursive, x is a
strict occurrence in an object, if it is either the head of a pattern (stocc) or if it occurs in the
spine as argument to a constant (stconst) or to a local parameter (stlocal). As expected, x is
a strict occurrence in a A-term, if it occurs strictly in either the binder (stlamdec) or the body
(stlambody).

stocc Side condition: T \- S pattern
r \-x x ■ S strict

T hx S strict y : A <E T T \-x S strict
stconst stlocal

T \-x c- S strict r \-x y ■ S strict

T \-x A strict r.y : A\-x M strict
stlamdec stlambody

T \-x \y : A.M strict V \-x Xy : A. M strict

On the type level, a variable x occurs strictly in an atomic type if it occurs in any of its arguments
(stfam). Likewise it occurs strictly in a Il-type, if it either occurs strictly in its binder (stpidec)
or its body (stlambody).

r hx S strict
stfam

r \-x a ■ S strict

r hx Ai strict T,y:A1\-xA2 strict
stpidec stlambody

T \-x Uy : Ai. A2 strict T hT Uy : A}. A2 strict

Finally, a variable x occurs strictly in a spine, if it occurs strictly in at least one of its arguments
(stthis).

rh,M strict T hr S strict
 stthis stnext
rhxM;5 strict ThxM;S strict

170

CHAPTER 6. OPERATIONAL SEMANTICS FOR A4+ 171

One of the main results of this section is that if we require the ip in the alt-rule from
Section 5.6 to be strict in its co-domain then it automatically satisfies side condition (5.3). The
argumentation rests on the observation that any matching problem of a strict ip against a ground
r\ (which as usual might be open with respect to a well formed parameter context $) is decidable.

In the remainder of this section we give a detailed account of this argument, but first we
have to generalize strictness to matching problems. Informally, strictness is also a property of
a state formula which is preserved during execution as we show in Section 6.4.5. We say, that
a matching problem $ o 3*. [^{l^} is strict iff U\ is strict in * which we denote with the
judgment ^ h U\ strict.

Judgments

Top-level strictness for universal formulas: ty\ h (^2>U) strict
Universal formula-level strictness: \-x U strict

Rules The top-level judgment serves as iterator, iterating through all assumption variables
(ustass) and variable blocks (ustblock) in * and ensuring that each declaration has at least one
strict occurrence in any of the left-hand sides of one of the possibly many equations in U. Recall
that the left hand sides of any equation ip a r\ or M\ K, M2 in U may contain free existential
variables still to be matched whereas the right hand sides are ground.

ustdone
• h (#2 > U) strict

*i I- (x : A, *2 > U) strict hx U strict

^i,x:A\-(^2>U) strict

#i h {x : A, *2 > U) strict \-x *2 strict

ustass

ustass'
*i,x : A h (#2>£0 strict

(x : A) E p #i h (pL, *2 o U) strict \-x U strict

*i,yOL H {$>2>U) strict

(x : A) e p ^ih (pl,^2>U) strict \-x *2 strict

ustblock

*i,pL h ($2>U) strict
ustblock'

The second strictness judgment for universal state formulas is indexed by a variable x. It is
derivable if x occurs in a strict position in any of the left hand sides of the equations contained

171

172 6.4. MATCHING

inU.

\-x ip strict, \-x U strict
ustsubl

\-x ip « 77 A U strict

r \~x M] strict

\-x (VT. Mi ta M2) A U strict

r \-x Ai strict

ustobjl ustobjr

\-x {W.Ai « A2) At/strict

T ha: 5i strict

H* tp ~
 ustsubr

Tj /\U strict

Hx U strict

Hx (vr. .Mi a M2) AU strict

\-x t/ strict

H* (vr. ■Ai « A2) A U strict

\-x [7 strict

usttypel : — usttyper

— ustspinel ustspiner
r-x (Vr. Si « 52) A [/ strict hT (VT. 5i « S2) A U strict

The generalization of the strictness predicate to state formulas is straightforward. Moreover,
no additional information is involved in this construction. In particular, we show that the initial
state $ > 3\I/. {ip RS 77) constructed from a strict if) is also strict in "I'. Thus if a case proof term
in M-2 satisfies the side condition (5.3), the initial state of the matching process is also strict.

Lemma 6.27
If V :: $'\-ip strict
and $ h 77 <E *'
then $' \- (i/) ~ 7/ A True) strict

Proof: by induction on V. □

In Section 6.4.5 we show as part of the completeness argument that strictness is preserved
throughout the run of the matching algorithm. The main result of this section is that strict
matching problems are decidable with the matching algorithm from Section 6.4.2 being the
decision procedure. It is this observation which justifies the choice of strictness to warrant side
condition (5.3).

6.4.4 Soundness

The matching algorithm is a sound procedure for all strict matching problems. As a matter of
fact, the result is more general. It applies also to matching problems which are not necessarily
strict. Given a successful trace of the matching algorithm, the deduction of h T matchable
contains enough information to extract the desired matching substitution.

Recall that the matching algorithm proceeds in two phases. Informally, the first phase starts
with the matching problem ip « rj and terminates in a state T{[/}, where U is a list (or better
conjunction) of all constraints postponed during the run. In the second phase the algorithm
solves all constraints until it reaches T{T} as final state. In order to show soundness we extract
from these two traces the matching substitution 7/, which satisfies i/> o 7/ = 77.

The soundness argument is presented in three steps. First, we show that if the matching
algorithm makes one step from state Ti to state T2, any matching substitution 772 for T2 can be
extended in a unique way to a matching substitution for Ti. Clearly, by applying this argument
successively, we can generalize this result to T\ and T2 being several steps apart.

172

CHAPTER 6. OPERATIONAL SEMANTICS FOR M% 173

Lemma 6.28 (Solution preservation)

L'.:If$>3V.Ui{U2} =>• ®>3V'.U[{U'2}
and rf (§ h rf 6 W) is a solution of 3*'. U[{U'2}
then there exists a unique r\ (Q h rj £ ty) which is a solution of 3\&. U\{U2}

2. IfV::$>3q.Ui{U2} =±> $> 3*'. tf{{C/£}
and rf (§\-rf E ^') is a solution of 3*'. U[{U'2}
then there exists a unique r\ (Q> h rj € ty) which is a solution of 3\I>. C/i{C/2}

Proof: 1. direct by inspection of the rules, and 2. by induction on V. □

In order to apply the local soundness lemma, we must know, that there exists a matching
substitution for the termination state T{T}. And indeed, not very surprisingly, there is one
namely the empty substitution.

Lemma 6.29 (Initial soundness)
The substitution ■ is a trivial solution of T{T}.

Proof: follows directly from Definition 6.25. □

From the two traces of the matching algorithm we construct a solution of the original matching
problem in the following way. Starting with the second trace, and the lemma about initial
soundness, there must be a solution of T{U} by the local soundness lemma. By definition
this solution is also a solution for U{T}. Another application of the local soundness lemma
immediately results in a matching substitution for the original matching problem.

Lemma 6.30 (Soundness)
If V :: h $ t> 3*'. ip « r?{T} matchable
then there exists a unique rf, $ h 77' G \l/' and ip o rf = r\

Proof: direct by Lemma 6.29 and Lemma 6.28. A detailed proof can be found in Appendix B.2.
D

In summary, it follows that the matching algorithm is sound by extracting the matching
substitution from the trace in a right to left fashion. The completeness result of the matching
algorithm for strict matching problems is discussed next.

6.4.5 Completeness

The matching algorithm from Section 6.4.2 is sound for strict matching problems as shown in the
previous section. Whenever the algorithm terminates and reports yes, there is indeed a solution
for the initially posed matching problem. In this section we show, that we can also trust the
answers of the matching algorithm. In particular, given a solvable problem, the algorithm will
terminate and report yes. Moreover, we show that the matching algorithm always terminates,
which makes it an appropriate decision procedure.

We begin this technical discussion with the definition of a particular well-founded ordering,
which guarantees that the matching algorithm always terminates. A state of the matching

173

174 6.4. MATCHING

algorithm is formally defined as <& > 3\P. ?7i{C/2} for two universal state formulas U\ and U2. As
the matching algorithm progresses, it either instantiates variables of *, or it decomposes the
left hand side of some equation in Uy. As usual, we write |\t>| for the length of i' and we define
\Uj | as the sum of all LF-subobjects of all left hand sides of equations in Uy where we count |:r|
as 1+ the number of all LF subobjects of all types of that p the parameter variable x is defined
in. Clearly, 0 < |*| and 0 < \Ui\.

As termination ordering for the matching algorithm, we choose the lexicographic ordering
on pairs of non-negative integer numbers (1*1, \Uy\). Recall, that the lexicographic ordering is
defined as follows.

(ni,mi) <iex (n2,m2) iff riy < n2 or (nj = n2 and my < m2)

The measure of a state $t>3*. Uy{U2} is defined to be the pair (|*|, \U\ |). Back to the complete-
ness argument. It hinges on the fact, that there is a transition for every state whose measure is
different from (n, 0). The algorithm terminates if Uy = T or — in measures — if \Uy\ = 0. Can
* still contain existential variable declarations once the matching algorithm conies to a halt
with Uy = T? The answer is no, and the reason is deeply connected with the strictness require-
ment. If we can guarantee (and we can!) that strictness is preserved during the execution of the
algorithm, the final state * t> 3*. T{U2} must still be strict, and it hence follows by inversion
that * = •. If * is not empty, there must be at least one strict occurrence of in variable in T
which cannot be the case. As invariant, we infer that each strict state satisfies |*| < \Uy\.

Therefore, and because the ordering is well-founded the algorithm terminates in a state whose
measure is equal to (0, 0) or it reports failure. Which state can this be? It must be * t> T{U2}
for any U2.

Lemma 6.31 (Measure)

1. IfT = $>31>.Uy{U2}
and V :: * h U\ strict
then |*| < \Uy\

2. IfT = $>3<L>.Uy{U2} is given
and |*| = 0 and \Uy\ = 0
then T = * t> T{U2}

Proof: 1. by induction on V, 2. by definition of \U\. Every other syntactical construction for
U has at least one LF subobject. D

We start now with the discussion of the completeness proof itself. It is split into two parts
according to the two phases of the matching algorithm. Assume, that the there is a solution
for the initial state T. First we prove, that if T ^ * o T{[/2} then the matching algorithm can
perform another step. In particular, this step preserves strictness and it reduces the measure of
a state. A slight generalization reveals, that when running it on any strict and solvable initial
state, the matching algorithm eventually terminates in $ > T{[/} for some U. All existential
variables are instantiated, and therefore U must be ground (with respect to $, naturally).

Lemma 6.32 (Completeness I)

174

CHAPTER 6. OPERATIONAL SEMANTICS FOR A4+ 175

1. IfU^T
and <& > 3\I/. Ui{U2} is given
and r) (<& h n G ^>) is a solution of 3\I/. U\{Ü2\
and ^> \- U\ strict
then^>3^.U1{U2} ==>• $ > 3^'.U[{U'2}
and there exists an rf ($> \- rf G ^>') which is a solution of 3\I/'. U^lU^}
and *' h U[strict

and(m,\U[\)<lex(\n\Ui\).

2. If T = $ > 3*. Ui{U2} is given
and ^ \- U\ strict
then T =^> $ > J{U} for some U.

Proof: 1. by inspection of the rules, 2. by induction on (|\I/|, \Ui\) using Lemma 6.31. A detailed
proof can be found in Appendix B.2. D

In the second phase, we start the matching algorithm on &>U{T}, where the U is the list of
constraints resulting from the first phase. As already noted, U is ground, i.e. it does not contain
any free existential variables. Informally, U is nothing else but a set of equations to be checked
for convertibility.

How can we convince ourselves that the algorithm terminates in T{T}? First, note that some
of the rules defining the matching algorithm can never apply, mpat and mnopat for example can
never be applied because there are no existential variables. Therefore, the set of constraints never
changes and thus it is remains empty (= T) during the entire second phase. That U eventually
ends up being empty, too, follows by the same argument used for the first completeness lemma.

Lemma 6.33 (Completeness II)

1. IfU^T
and # > U{T} is given
and • (<& h • G ■) is a trivial solution for U{T}
then<S>t>U{T} => &>U'{T}
and ■ (<& h • £ •) is a trivial solution for U'{T}
and \U'\ < \U\.

2. If T = <i> > U{T} is given matching state
then$>U{T} =^ $>T{T}

Proof: 1. by inspection of the rules, 2. by induction on \U\ using Lemma 6.31. A detailed proof
can be found in Appendix B.2. D

An easy combination of these two previous results yields the completeness lemma. If a strict
matching problem has a solution, the matching algorithm eventually terminates and reports yes.

Theorem 6.34 (Completeness)
IfT = $>3V.U1{U2}
and V :: * h U\ strict
and r\ (Q h r\ G *&) is a solution of 3\I/. Ui{U2}
then h T matchable

175

176 6.5. BIG-STEP SEMANTICS

Proof: direct A detailed proof can be found in Appendix B.2. □

As a side result of the completeness argument follows the termination property of the match-
ing algorithm. Each run terminates, because the measure of the successive states strictly de-
creases. Since the termination ordering is well-founded, the matching algorithm must come to
a final state. If it is T{T} it reports yes, if not it reports no.

Corollary 6.35 (Termination)
Any sequence of => -reduction steps is finite.

In summary we have shown that matching is sound, complete, and decidable, provided that
the matching problem is strict. The solution that matching computes is unique. Therefore side
condition (5.3) follows if we require the case defining xj> from rule alt to be strict.

Theorem 6.36 (Determinacy)
IfV:: tf'h V'G *
and £ :: ty' \- ip strict
and T :: $ h 7/ G *
then there exists a (unique) rf ($> h 7/ € ty') s.t. ij> o 7/ = 7/
or not.

Proof: direct. A detailed proof can be found in Appendix B.2. D

In conclusion, we stipulate
<3>' h tp strict

as syntactic criterion for side condition (5.3).

6.4.6 Results

The main difficulty in designing a matching algorithm for .Mj lies in the fact that in general
matching for LF is not known to be decidable. It is only known to be decidable on fragments,
as for example the pattern fragment defined by Miller. But unfortunately, this fragment is too
weak for our purposes. Already the matching problems associated with our examples lie outside
the pattern fragment.

As solution to this problem we characterize an extension of the pattern fragment which
we call the strict fragment. The main result is, that strict matching problems are decidable
and yield unique matching substitutions. The matching algorithm defined in this section is the
appropriate decision procedure. Strict unification problems for the strict fragment on the other
hand might not be decidable. We leave a further investigation to future research.

6.5 Big-Step Semantics

There are several ways to show the consistency of a logic. As already motivated earlier the way
we have chosen to show the consistency of M2 is to assign an operational meaning to its proof
terms and to show that each proof term corresponds to a total function — a realizer. In this
section, we define such an operational semantics. In particular, it is a big-step semantics which
we refine in the next chapter to a small-step semantics. Why defining two different semantics?

176

CHAPTER 6. OPERATIONAL SEMANTICS FOR Mf 177

The big-step semantics is only relates proof terms with the result of their computations, it is
easier to describe, and therefore it is more accessible than the small-step semantics. Nevertheless,
for the soundness proof of M2, we need the small-step semantics. If a proof term cannot be
related to any result of a computation, be it because the function does not terminate, or because
its evaluation gets stuck, the big-step operational semantics is not fine-grained enough to support
any further investigation. Based on a state transition machine very similar to the CPM machine
[PfeOO], the small-step semantics on the other hand allows us to express properties such as
termination and progress. We leave this discussion entirely to the next chapter.

The operational semantics assigns a computational interpretation to the proof terms of the
meta-logic M%- Any proof of any theorem can calculate from any well-typed input (a set of
objects instantiating the universal quantified variables) a well-typed output (a set of objects
which witness the existential quantifiers). The input and the output arguments are possibly
open with respect to a given regular world extension $. Therefore we index the evaluation
judgment by $.

The operational semantics itself is defined with respect to three different judgments, one for
proof terms P, one for declarations D, and a last one for cases Q. Proof terms are evaluated
via the judgment $ I- P ^ V, where we denote the outcome of the evaluation by V. V is a
proof term itself, but in addition it is a value which cannot be evaluated any further. Values are
potentially open with respect to the regular world extension.

Values V ::= () | (M, V) \ Ax : A. P \ \pL.P \ (Vu V2)

Declarations declare extensions of meta contexts \I>; A in which they are defined. Recall
from rule sei, that these context extensions are denoted by \1//; A'. The attentive reader might
already suspect, that the result of evaluating a list of declarations, results in a list of LF objects
for \l/' and proof terms for A'. The vehicle we like to use in order to express these resulting
terms are substitution extensions denoted by (ip\ 8). Formally, we write $hD^(^(i) for the
evaluation relation of declarations. Finally, we need to evaluate cases. A case in Q is triggered if
it matches the current "environment" — the explicit substitution as case subject — ip; 5 using
the matching algorithm defined in Section 6.4.2. Case analysis is expressed by the judgment
$ h (ip; 5) ~ Q ■->■ V. And again V denotes a proof term.

Judgments

Evaluation of programs ^hP^y
Evaluation of declarations 3> h D '-> 77; 5
Selection $ h (■*/>; 6) ~ Ü «^ V

Rules Evaluation, assumption and selection obey the laws of a call-by-value semantics. The
only non-standard rules are evJet and ev_case. evJet evaluates first the list of declarations
and obtains a meta-substitution extension ip\ 6, which is in turn applied to the body of the let
construct. The ev_case rule selects a matching case by invoking selection.

ev_La m : :— evJa m
$\-Ax:A.P*->Ax:A.P $ h \pL.P ^ XpL.P

§\- p^.V $ h Pi ^ Vi $ h P2 "->■ V2
evJnx ev_pair ev_unit

177

178 6.5. BIG-STEP SEMANTICS

 ev.let
$ h let D in P <->• V

$ h P[//X e F. P/X] --> v $ h (?/>; <s) ~ n ^ v
 ev_rec ev.case

$h/a£F.P^F $ H case (I/K 8) oi ü ^ V

The evaluation rules for declarations return meta-substitution extensions (i[>';6'). The for-
mulation of these rules is are non-standard since they follow the provability rules of M% in
Section 5.4.4. The definition of ev_new uses meta-substitution abstraction as defined in Sec-
tion 6.6.

ev_empty

$hP^(M,K) $ h £>[id*, M/.r: vyy] ^ (*//; <?
ev_split

$ h {(x :A,yeF) = P,D)^> {M/x, i]/: V/y, 8'

$hP^ Ax :A.P' $ h P'[id<5,. M/x] «-> F $ h £>[Vyy] ^-> (V-»'; <J'

$hP^ A/9/L.P' $ h P'[id*,p//?'] -> F $ h Z>[F/y] -> (V/;<J'

ev_App

$h(yeF = PAD)^W/;y/y,*')

$,pL\-D^ (il>';6')

I. s>\

-ev_app

ev_new
<&\-vpL.D^ {\pL.{tl>';6'))

$hP^(V],y2) $ I- £>[Vi/x] ^ (</>';&

$ h x G Fi = 7Ti P, £> -» (V/; Vi/x, <5')

$ h P <-+ (Vi, V2) $ h- D[F2/x] -> (V>'; <$')

$ 1- (x G P2 = 7T2 P, D) -> (V'; V2/x, <*')

ev_fst

ev_snd

Finally, there are two rules defining the selection of cases. Because of Theorem 6.36 it
is always decidable if a case in Q applies, and in addition the new environment is effectively
computable by the matching algorithm presented in Section 6.4.2. The situation when a case
matches is expressed by rule ev_yes. If it does not match, ev_no tries the next case. Note, that
there is no rule for U = •. If this case is encountered, it follows that the function currently

178

CHAPTER 6. OPERATIONAL SEMANTICS FOR A4+ 179

executed is not a realizer because the evaluation would terminate without returning a value. A
careful study why such a situation cannot occur will be the focus of the next chapter.

$\-P[ip";8] ^V
ev_yes

$ h (</>; Ö) ~ (fi, (* > tp' .->■ P)) -» F

if there exists a V>" s.t. (tp1; idA) ° (?/>"; <J) = (V'5 #)

$ h (?/>; 5) ~ Q ^ V
 ev_no
$ h (?/>; 5) ~ (fi, (* o $ H-> P)) -+ F

if there is no V" s.t. (<//; idA) o (V>"; 5) = (^; S)

The operational semantics is type preserving. Specifically, its proof relies on a technical but
easy to prove lemma which we have dubbed context lemma.

Lemma 6.37 (Context)

1. IfV :: $;• h id*,tp;5 E §,[id*,M/x]fy;[id*,M/x,id*]A
and E :: [$] h M : A
and P :: $; • h F ef[i4,M/i]
tfjen $;• h (id*,M/x,ip;V/y,S) e($,i:i,f;y6 F, A)

& 7/2?::*;-r-*d*,^;<JG*,*;A
and V :: $; • h V E F
then $; • h (id*;ij>; V/y,8) E ($, f;y£F, A)

Proof: direct in both cases using Lemma 6.21. A detailed proof can be found in Appendix B.3.
D

Based on the context lemma, the type preservation theorem follows. Clearly, the evaluation
relation is mutually dependent on the evaluation relation of declarations and cases, and the type
preservation theorem must hence be accordingly generalized.

Theorem 6.38 (Type-preservation)

1. IfV::$\-P^V
and S :: $; ■ h PEF

then $;-\-V E F

2. IfV::$hD^iP;5
and£ ::$;■!- D G*;A
then $; • h (id*, ip; S) E ($, *; A)
which extends $; • h (id*; ■) E ($; •)

179

180 6.6. SUMMARY

3. IfV::$\-(iP;ö)~n^V
and T :: $; • h ip; S G *; A
and£::*;AhfieF
tf;,en *; • h V G Fty>]

Proof: by simultaneous induction over X>(1),X>(2),X>(3) using Lemma 6.20, Lemma 6.22,
Lemma 6.37, Lemma 6.11, Lemma 6.7. A detailed proof can be found in Appendix B.3. □

Note, that the proof of the type preservation theorem does not rely on the termination
side condition (5.1) or the coverage side condition (5.2). In fact, even without these two side
conditions, the operational semantics is type-preserving. In other words, every function that
corresponds to a well-typed proof term in A4^ is partially correct.

This already concludes the presentation of the operational big-step semantics. It assigns
an operational meaning to a proof term by relating it to the result value of its computation.
Moreover this computation is type preserving. The main draw back of this kind of operational
semantics is that it does not offer any fine-grained control on how the evaluation is being con-
ducted. Using only the big-step semantics we cannot express that a proof term interpreted as
function is total and applied to LF-objects always computes a value.

6.6 Summary

In this chapter we have introduced and proved properties about all major basic concepts needed
for an in depth analysis of the meta logic M.\ ■ On the basis of generalized substitutions, meta-
substitutions, lemma instantiations, context schema subsumption, matching, and strictness, we
have defined an operational big-step semantics which assigns an operational meaning to proof
terms, justifying the intuitive idea from Section 2.6, that proof terms correspond to recursive
functions.

180

Chapter 7

Realizability

From a functional perspective, the proof terms of M.\ correspond to partial recursive functions
suitable for programming, but from a logical perspective we must require from these functions
to be total to be considered proofs. Unlike the soundness proof of FOXAIN which is based on
a cut-elimination argument in the presence of natural number induction, the soundness proof
for M2 is based on realizability; each proof term in M% realizes a proof. That means, that
upon application to arguments, proof terms evaluate always to some result, in particular their
computation makes always progress and will eventually terminate. Under the regular world
assumption, we have argued that the big-step operational semantics is not fine-grained enough
to study properties such as termination and coverage. Thus we refine the big-step semantics to
a trace-based continuation style small-step semantics and establish two syntactic criteria on the
form of proof terms that imply progress and termination of their computations. Together, the
two criteria guarantee that .M^'s proof terms are total, entailing the soundness of the meta-
logic M.~2 ■ We stress that the criteria are syntactic, which makes them good candidates for proof
generation and proof checking in Twelf (see Chapter 8).

The soundness proof of a functional calculus as complicated as M.\ involves a lot of work.
Sadly, the operational big-step semantics is inappropriate to reason about proof terms the way
we need to. In particular, $ h P ^ y is not an algorithmic description of how to evaluate
proof terms, it is merely the definition of a relation, relating a program to be executed with
the result of its computation. This means that if a computation does not terminate or cannot
make progress because not all cases are covered, $ h P <->■ V is simply not derivable for any V.
On the other hand, if we had a more algorithmic specification of the operational semantics we
could formulate termination and coverage properties. Specifically, it would allow us to express
the non-termination of the program "//x E ()-x", because once this program begins to execute,
it deterministically transforms to itself after each execution step. Similarly, it would allow us
to express that the evaluation of "case (lam(Ay : term rrn. y)/x; •) of ■" does not make progress,
since no cases are applicable. Therefore, we refine the big-step operational semantics to a small-
step semantics that is executable on an abstract machine. Only by observing the computation
trace of an abstract machine it is possible to investigate if a function is total or not.

This chapter is organized as follows. In Section 7.1 we define a small-step semantics for
the proof terms of M.%- This semantics is trace-based, and can be executed on a continuation
based abstract machine, very similar to the CPM machine [PfeOO]. In addition, it refines the
big-step semantics from Section 6.5, but we skip the proof. We then address the question of

181

182 7.1. SMALL-STEP SEMANTICS

termination in Section 7.2 and coverage in Section 7.3. Termination and coverage are the two
necessary properties for totality. Therefore, proof terms in M.% are realizers and the meta-logic
M-2 is sound, which we show in Section 7.4. Finally, we summarize the results of this Chapter
in Section 7.5.

7.1 Small-Step Semantics

In the previous chapter, we formally expressed the evaluation of a program P to a value V
by the judgment $hP4F where $ is the parameter context modelling the regular world
assumption. In order to appreciate the new and refined operational semantics, we have to look
at evaluation from a different point of view. We say that P evaluates to V if and only if there
exists a trace from an initial state which corresponds to P to a final state which correspond to
V. The trace is to be understood as a sequence of state transitions performed by some — still
to be defined — abstract machine.

This idea can be visualized by the following diagram: The derivation V stands for compiling
P into a program contained in the state So, £ is the trace of the abstract machine, and Sn is
the final state reached say after n steps. Q then extracts the result of the computation from Sn

and decompiles it into a value in the sense of Section 6.5.

p P::P^V , y

V :: [P) = S0 Q ::]$„[= V

£ :: So => Sn

bn

Consider the proof term dia formalizing the proof of the diamond Lemma 4.6. Given that
all universal quantifiers are instantiated by concrete LF objects, the residual proof term P is
of existential type. It guarantees that the common reduct and the two derivations closing the
diamond exist. Upon completion of the abstract machine, we extract those three witness objects
from the result of the computation.

In this section, we discuss various aspects of the new small-step operational semantics and
the underlying abstract machine. The fact is, that the meta-logic M.^ is sound, even if the
diagram above does not commute. All that matters is that by executing the proof term applied
to LF objects, the result are well-typed objects, witnessing that the types of the variables bound
by existential quantifiers are inhabited. It does not matter, if the big-step semantics evaluates
to a different value or not. On the other hand, even though we will not provide a proof for this
claim, we conjecture that the small-step semantics is a refinement of the big-step semantics, i.e.
that both are observationally equivalent: For any derivation V evaluating P to V, the small-step
operational semantics will compute V from [P], and the reverse also holds. For any program P,
value V, and computation trace £ that starts in [P] and ends in [V] it is possible to reconstruct
a derivation V of P <-» V.

The kind of abstract machine employed in this thesis is a continuation stack based state
machine. It is inspired by the CPM machine [PfeOO], and the CPS machine [FSDF93]. A
state of the computation contains three bits of information. There is a continuation stack
which represents delayed computations necessary to compute the overall value V, a generalized
parameter context <J>, and, naturally, the program to be executed.

182

CHAPTER 7. REALIZABILITY 183

This section is organized as follows: we begin with the definition of programs and values and
describe the process of compilation in Section 7.1.1. Based on programs we define execution
states in Section 7.1.2. The abstract machine, executing the programs of the small-step semantics
is discussed in Section 7.1.3, for which we define a typing discipline and prove type preservation
in Section 7.1.4.

7.1.1 Programs

The small-step operational semantics is based on the idea that proof terms of M J are compiled
into programs suitable for execution on an abstract machine. In this subsection we discuss the
form of programs. We also explain how to compile proof terms into programs.

What are programs? Traditionally, a program is a list of instructions to be executed on
the abstract machine. In this thesis however, we avoid sequentializing a proof term into a list
of instruction but we interpret proof terms unaltered as programs. Consider, for example, a
proof term of the form (Pi,P2). When executing it on our abstract machine it will eventually
evaluate to the value (Vi,^) (see the definition of the big-step operational semantics). But
intuitively, during computation, the abstract machine will inevitably encounter the program
{Vi,p2), if we consider a left to right computation of pairs. Note, that in this example, all three
programs are syntactically the same proof term, but conversely, each of them carries a different
computational meaning. Thus, each proof term gives raise to several programs, depending on
which of the arguments have been instantiated by values (values are proof terms that do not
need to be computed any further, since they wouldn't change). Throughout this chapter we
distinguish the different off-springs of a proof term by different variable names of its arguments.
P stand for programs, and V for values.

What forms do values take? Differently from Section 6.5 where we describe values only as
the outcome of the evaluation of a proof term, in this setting values can take additional shapes;
meta-substitution extensions must be considered as values because they may be the outcome of
a list of declarations.

Values: V ::= Ax : A. P \ XpL. P | (M, V) | (V1:V2) | () | fa; S)

Thus, in summary, programs are proof terms or values. This information can be easily
inferred and need not be represented explicitly. In accordance with this observation there is no
need to introduce a new syntactic class for programs. Instead, we use P to denote proof terms
and programs simultaneously.

What about compilation? Compiling a proof term means to tag it by information which
subterm is already a value and which is not. Symmetrically, decompiling a program means to
remove those tags. The compilation and decompilation operation [•] and]■[can be safely omitted.
Proof terms are defined in form of declaration and cases. What was said in this subsection about
compilation also holds for the declarations and cases, to which we sloppily refer as programs.

7.1.2 States

A state of the abstract machine is a triplet consisting of a parameter context $, a continuation
stack C, and a the program to be executed. In this setting programs are either proof terms,
declarations, cases or substitutions. Therefore, one possible form of a state is $;Ci> P. In

183

184 7.1. SMALL-STEP SEMANTICS

general, states are denoted by 5, and should not be confused with spines from Section 6.4.
Their precise definition is given at the end of this subsection.

Continuation stacks C are stacks of delayed computations necessary to eventually compute
the overall value of a program. Each continuation is a function expecting one argument, namely
the result of the previous computation. There are different styles in presenting continuations;
one can either represent each continuation by a leading A-abstraction, binding the one argument
[PfeOO] and assigning a name to it, or alternatively, one can represent each variable by a special
symbol [FSDF93]. In this presentation we have decided to follow the latter style and we write
• for each hole representing a variable.

Returning to the small example from above, we consider a trace which computes the value
of a pair (Pi,^)- It starts with computing value V\ of its first component P\. But before the
abstract machine starts with the computation of P\, it has to memorize how to interpret its
result. This is done by adding an appropriate continuation to the continuation stack. The form
of the continuation is (•, P2), meaning that once Pi is executed, the resulting value belongs into
the first position of the pair (V^P?). Similarly, the evaluation of the second component requires
the continuation (V\, •) to be added to the continuation stack. Putting it all together, informally,
here are a few snapshots along the trace of the abstract machine. We write Si =£• S2 for a
step of the abstract machine.

*;C>(Pi,P2>
$;C,<.,P2)>Pi

$;C,(;P2)>Vl

$;Ct><Fi,P2>
$;C,(Vi,.>>P2

$;C,(Vi,.)>V2
$;C>(Vi,V2>

This example shows not only the idea behind continuation stacks in particular, but also how
the abstract machine works in general. The different programs contained in a state determine
the next computation step. If needed, the continuation stack is extended. Once a value in the
computation is reached, the top continuation of the computation stack is awakened, and the • is
replaced by the value. The computation resumes with the new state. Therefore, in the general
case, the computation of a program starts with an empty continuation stack, and the abstract
machine halts with a value if the continuation stack is empty again. This value is the return
value of the computation.

Since the proof terms of M.\ are recursive functions defined via case analysis, the abstract
machine can reach a state where it has to select an applicable case from the given list of cases
fi, and continue with the execution of its body. We call these states match .states and write
<&; C > (ip; 8) ~ Q. A transition to a match state means to select an applicable case from Q,, to
instantiate a few variables, and to execute the program in its body. The subject of the case is
an explicit substitution (tp; 5) against which the machine has to match the cases in Q using the
algorithm we have developed in Section 6.4.

184

CHAPTER 7. REALIZABILITY 185

There are two possible states we have not accounted for yet. Programs compute values, but
declarations compute substitutions. Thus, the state which prompts the abstract machine to
execute a declaration is $; C\>D whereas the result of this evaluation prompts for a special kind
of state, suitable to return the result substitution $; C > ip; 5. In addition, the continuations
introduced by declarations contain two »'s. In the case such a continuation is awakened and
applied to (if>;5), the left most • is replaced by ip and the right most • by 6. We denote the
empty continuation stack with •.

Continuations: C ::= • | C, let • in P
|C,(.,P)|C,(F,.)|C,(M,.)
| C, (x E F = Ti-i •, D) | C, (x G F = 7T2 •, D)
|C,(.;F/x,.)
\C,({x:A,yeF) = ;D)\C, (M/x, .; V/y, •)
\C,{xeF = »M,D)
\C,{x£F = mp,D)
\C,{xeF = ;D)
| C,(ApL. (.;.))

States: S ::= $; C> P | $; C > D | $; C o ty; 5) ~ Ü \ *; C > </>! <J

The first transition into a match state is depicted by the following snapshot of a particular
trace of the abstract machine.

... => $; C> case (^; <J) offi ==> *; C > {ip; S) ~ fi =*■ ...

Operationally speaking, the abstract machine attempts to find an applicable case in Ü, and
makes a transition to a regular state, unless such a case does not exist. It is the one of the
results of this chapter, that an applicable case always exists, given that the side condition (5.2)
is satisfied. We continue this exposition with the definition of the abstract machine.

7.1.3 Abstract Machine

Following examples from the literature, we specify the operational small-step semantics as a
transition relation between states. The single step relation is denoted by => , and its transitive
closure by => .

One-step reduction h S\ =^> S2
Multi-step reduction h Si ==>■ S2

The rules are a direct translation of the rules from Section 6.5 where we make extensive
use of postponing the computation of subprograms as continuations. Every transition rule
introduces at most one continuation. For each such rule, there is a dual rule that defines how
the continuation is to be applied to a value. In the let case, for example, there is a rule that
defines how the program let D in P is computed — D is computed while storing the overall
goal of the computation let • in P on the continuation stack. The second rule then says, that
V must be a meta-substitution extension (because of typing which we define in Section 7.1.4).
Consequently, by reawakening the top continuation we obtain a new program embedded in a
new state. Without loss of generality — as we discuss below in more detail — we can assume
that every program computes a value otherwise some other rule is applicable.

185

186 7.1. SMALL-STEP SEMANTICS

trlet ::$;C> let D in P =*■ $; C,let • in P> D
trletC::$;C,let«inPo(V;;5) =*» $;C>i>[id.*,V>;<$]

Similarly the definition of the next four transition rules for conjunction account for the
computation of pairs — as discussed above. The first two rules define the computation of a pair,
where both components are non-values, the second two rules define the computation if the left
component is a value.

trpair :: $;Ct> (P, P2) => $; C, (., P2) t> P,
trpairC::$;C,(.,P2)t>F => $;C>(V,P2)
trmix ::$;C>(Vi,P2> => *;C, (Vi,#) > P2

trmixC ::$;C,(Vi,«)>V =* $;C>(Vi,V)

Dually to the rules for pairs, there are rules that define the computation of projections.
Recall, that projections are proof terms for left rules, and therefore they take the shape of
declarations. Computing the result of a projection is standard. The first transition initiates the
computation of the program from which we project, while storing on the continuation stack the
information what to do with the result: x € F = IT\ •, D. The second rule is activated once this
continuation lies on top of the continuation stack. By inversion it follows that the form of the
result value (Vi, V2). Next, the machine continues to compute the rest of the declarations, and
we can expect that it terminates in a value, precisely in a meta-substitution extension. This
substitution must be extended by V\ /x.

trfst
trfstC
trsnd
trsndC
trmeta

: $; C > x e F = ITi P, D =>• $; C, x <E F = TTJ •, D t> P
:$;C,xeF = 7ri.,D><Vi,V2) =» *;C, (•; Vi/x,.) > D[V,/x]
: <J>; C > x G F = ir2 P, D => $; C, x e F = TT2 •, D > P
:*;C,x€F = 7r2.,D>(Vi,V2> => *; C, (•; V2/x, •) > D[V2/x]
:$;C,(.;F/x,-)o(V^) =► *; C > (^ V/x, <5)

Very similar, the proof term of an existential formula is computed via two rules trinx and
trinxC which can be expected to return (M,P). Likewise three more rules (trsplit, trsplitC, and
trsubst) define the computation of a splitting operation. The trsubst rule plays the role of trmeta
from above, except — since this is a splitting operation — the witness object itself is part of
the final result.

trinx ::$;C>(M,P) => $;C,(M,.)>P
trinxC ::&;C,{M,»)>V =» $; C > (M,V)
trsplit ::$;Ct>(x:A,yeF) = P,D ==> $; C, (x : A, y € F) = •, D o P
trsplitC :: $; C, (x : A,y £ F) = ;D> (M, V) =^> $; C, (M/x, •; F/y, •) > Z?[id*, M/.T; V/y]
trsubst :: $; C, (M/s, •; V/y, •) > (^; 5) =► $; C > (M/s, V^; V/y, 5)

The following eight rules form the remaining transition rules for declarations. The rule
trempty marks the computation of the end-of-dcclarations symbol. Naturally, it returns an
empty meta-substitution extension. trApp, and trAppC compute the result of a redex. They
correspond to the ev_app rule from Section 6.5. The first rule computes the value of the recursive
function to be executed, and the second rule applies it. Similarly, for variable block applications
we define two rules: trapp and trappC. The trnew rule introduces a new parameter block of

186

CHAPTER 7. REALIZABILITY 187

assumptions. It then computes the value of its body D. This computation can be expected
to return a meta-substitution extension (ip; S) that is to be abstracted over the new parameter
block as discussed in Section 6.2.2 by trnewC.

C>- => $;C>-;-
C>xGF = PM,L> => $;C,xeF = .M,£>>P
C,xeF = »M,D>Ax:A.P =► $; C,x G F = ;D >P[id^,M/x]
Ct>x£F = Pp,D =4> $;C,xGF = «p,F>P
C,xeF = *p',D>\pL.P => $;C,xeF = «,I>>P[id*,p'/p]
C,x6F-.,D^ => *;C,(«;y/x,«)>I>[F/x]

trempty : :$;
trApp : :$;
trAppC : :$;
trapp : :$;
trappC : :$;
trassign : :$;
trnew : :$;
trnewC : :$,

C^v pL.D
pL;C,(XpL.

$,pL-1C,(\pL.(»;»))>D
»))>ip; S $;C>\pL.(ip;6)

The final set of rules defines the execution of the two operations recursion and case analysis.
The recursion rule does not introduce any new continuations. Similar to the ev_rec rule, it merely
computes the value of its body, given that all occurrences of the recursion variable are replaced
by the program itself.

trrec :: $; C > /ix G F. P =» $; C > P[px G F. F/x]

Case analysis on the other hand is slightly more complicated. It uses the matching algorithm
defined in Section 6.4.2. First, as shown in the example above, a analysis of cases is initiated by
the case-program. The subject of the case construct — the explicit substitution — is matched
against each case. Because we can assume that each case is well-typed, each substitution ip' is
strict in both cases. Therefore, by Theorem 6.36 the matching problem # > ip a tp' is decid-
able. And thus it is clearly decidable if tryes or trno are applicable. As side remark, no new
continuations must be pushed onto the continuation stack for the purpose of case analysis.

trcase :: $; C > case (ip; 5) of tt =>- $; C > (ip; 6) ~ fi
tryes :: $; C> (ip; S) ~ (Ü, (*' > ip' ^ P)) ==» $;C>P[ip";6]

if there exists a ip" s.t. (ip'; idA) ° (ip"; S) = (ip; S)
trno :: $; C > (^; <J) ~ (fi, (*' > </>' ^ F)) =► $; C > (^; (5) ~ $7

if there is no V>" s.t. (i/>'; idA) ° (ip"; 5) = (ip; 5)

The rule tryes and trno are quite simple, and we will see, the theoretical results associated
with this construction reuses many of the results we have shown in the previous Chapter. The
final two rules define the reflexive and transitive closure of traces.

trid
Si S2 52 S3

trstep
Si S3

This concludes our presentation of the operational semantics of the abstract machine. We
conjecture that the small-step operational semantics is sound and complete with respect to the
big-step operational semantics. Whenever there is computation of V from F, then V is the
result of evaluating F.

Conjecture 7.1 (Soundness)
IfV::$;*t>P =U $;*>V
then £ :: $ h F «^ V.

187

188 7.1. SMALL-STEP SEMANTICS

Vice versa, each evaluation of any program P to a value V can be simulated and executed on
the abstract machine while preserving results.

Conjecture 7.2 (Completeness)
IfV::$\-P^V
then £::$;*> P =^> §;*>V.

In summary, we have defined an abstract machine which executes the proof terms of M.^ •
The small-step semantics is the appropriate tool to reason about totality. In the next section,
we show that it is also type preserving.

7.1.4 Validity

A small-step operational semantics is said to be type preserving if all states in a computation
trace are valid and are of the same type! Therefore the task of designing an appropriate typing
discipline for this operational semantics reduces to establishing a suitable typing discipline on
states.

Internally, states consist of parameter contexts, continuation stacks, and programs. Pro-
grams are proof terms and they therefore inherit the typing discipline from Section 5.4. From
this assumption we can already guarantee that throughout a computation, the parameter con-
text $ remains well-typed given that it is initially well-typed what we always presuppose. The
reason is that $ is only modified by the trnew and the trnewC rule — and this clearly in a sound
way.

Therefore, the main challenge in designing a type system for states hinges on an appropriate
definition of the type systems for continuation stacks which we develop in this subsection. We
proceed as follows: Continuations are parametric meta-level functions different enough from
standard meta-level functions we have described in Chapter 4 to warrant a new definition of
continuation types. More precisely, there are two different continuation types. First, there is one
that expresses that a continuation expects a value of some formula F\ as input and returns some
value of formula F2 as result. Second, the other type expresses that the continuation expects
as input a meta-substitution extension of "type" (vl/; A) and returns a value of a formula F as
result.

Continuation types: T ::= F\=$ F2\ (*; A) =» F

From a logical point of view, both continuation types are implications; however, the meta-
logic M-2 is relatively impoverished with respect to the standard prepositional connectives such
as negation and disjunction and, in addition, we cannot quantify over substitutions. Thus, we
cannot use the meta-logic itself to provide the notion of continuation types.

The typing discipline for continuation stacks extends the one for continuations in the standard
way. Note, that because of the regular world assumption continuation stacks are not necessarily
closed. New parameter blocks are inserted into the parameter contexts by trnew and retracted by
trnewC. Therefore, the typing judgment for continuation stacks must take a parameter context
$ into account.

Valid continuation stacks: $hC£T

188

CHAPTER 7. REALIZABILITY 189

The semantics of this judgment is defined by a set of inference rules. The empty continuation
stack, for example, acts as the identity function.

-tcdone
$h*eF

A continuation with a let continuation as top element has type (*; A) =» F, if its body P has
type JFi in the meta-context $, \I/; A. The remaining continuation on the other hand must be of
type Fi =4> F.

$ h- C G Fi =* F $, *; A h P G Fi

$r-C,let . in PG (*;A) ^F

A stack whose top-level continuation is a pair with one • as first component has type Fi => F,
if the rest continuation stack has type Fi A F2 => F and the second component of the pair is
well-typed.

$\-CeFlAF2^F f;-hP£F2
 tcpair

$hC,(«,P) GFi =^F

Similarly, if the top continuation on the stack is a pair with a • as second component, its type
if F2 =$■ F given that the rest of the continuation stack has type F\ A F2 =>■ F and the first
component of the pair is well-typed.

$ h C G Fi A F2 => F $;-\-V£Fi

* I- C, <V, •> GF2=>F
tcmix

Along the same lines, if (M, •) lies on the continuation stack, the continuation stack must be of
type 3x : A.Fi=> F. Consequently, the stack as a whole has type Fi[id$,M/x] =*► F then.

$\-Ce3x:A.F1=>F m h M : A

$h(7, (M,.) G i^[id*, M/x] =*► F

We consider now the case that (x G F\ = 7ri •,£>) lies on top of the continuation stack.
It expects as argument a value of type Fi A F2, given that D has type (*; A). Thus, the
continuation expects a meta-substitution extension of *,x G i-\; A as input. A side remark:
These rules are the reason why we need to label each occurrence of x explicitly by its formula
otherwise we could not express the right premiss of tcfst. The typing rule for the symmetric
projection is defined analogously.

$HCe(*;xeFbA)^F $;xGFihD:*;A
 tcfst

$ h C, (x G Fi = 7Ti •, D) G Fi A F2 => F

$hCe (<£;xGF2,A) ^F $;XGF2^:*;A
 - tcsnd

$ h C, (x G F2 = 7T2 •, D) G Fi A F2 => F

The continuation (x G Fi = •, D) captures the assignment of the current value to x in D and
to subsequent occurrences of x in the proof term. Naturally, its type is F\ =>■ F, where F is the
type of the overall computation.

IhCe (*;xeFi,A)=J.J? $;xeFil-D:tf;A
 tcassign

$HC,(XGFI = •,£>) GFi ^F

189

190 7.1. SMALL-STEP SEMANTICS

Following a very similar line of argument, we derive that the type of the continuation used in
the trmeta-rule has type (\I>; A) =4> F.

$hCe(*;xeF1,A)=*.F $;-HFeFi
 tcmeta

$hC,(.;F/x,«) G (*;A)=»F

The previous three rules were concerned with typing continuation which may occur while evalu-
ating a pair. Analogously, the following two rides assign types to continuations which may occur
during the evaluation of a proof term of existential type.

$hCe (x: A,<5>-y G FUA) =» F $,x:A;y G F h D G $;A
 tcsplit

$hC,((i:^yGFi) = •,£)) e3a;: AFi =»F

$hCG (x:A,V;y GF,A) => F * h M : A $; • h V G F[id*,M/.7;

$ h C, (M/x-, .; F/y, .) G [id*, M/.T](*; A) => F
tcsubst

While executing a declaration that applies a function to an LF object or a variable block, a
new continuation is pushed on the continuation stack; in the first case, the continuation is
(y G Fi[id^,M/x] = • M,D), and in the second it is (x G F [id*,p'/p] = • p',D). The types of
the resulting continuation stacks are Va; : A. F\ =$■ F and YipL. F\ =4- F, respectively.

$HCe(*;y6f) [id*, M/x], A) =* F $\-M:A $:y€fi [id*. M/x] h D G *; A
 tcApp

$hC,(yGFi [id*, M/x] = • M, £>) G V.-?; : A. F =► F

&\-Ce{V;xeF1[id*,p'/p],A)=*F ^hp = p' *;xeFi[id*,p7p]r-Z)G*;A

$ h C, (x G F [id*, p'/p] = • p', D) G II/A Fi => F
tcapp

And finally, the case of the new-continuation C, (A/A (•;•)) has type (<I>; A) =>■ F only if C
expects the abstracted version of (\I/; A) as input, and returns a value of type F. In this rule II
is not a constructor, it is the function which abstracts vp; A, accordingly.

$HCenpi.(*;A) =»F
 tcnew
$,/h-C,(ApL.(.;.))G(1';A)^F

This concludes our presentation of the typing rides for continuation stacks. The next step in
this development leads to a typing discipline on states. We write h S G F if S has type F.

Valid states: h 5 G F

Since we distinguish four different kind of states (according to if its body is a program, a list of
declarations, a list of cases, or a meta-substitution), there are four different typing rules; tsprg,
tsdec, tscase, and tssub. The design of all rules is inspired by the form of a cut-rule in the sense
that Fi and (\E'; A) does not occur in the conclusion, respectively.

$HC e Fi => F $; • h F G F
 tsprg

h($;C»F) GF

190

CHAPTER 7. REALIZABILITY 191

$hC6(*;A)^F $;-hZ?G*;A
 tsdec

h(f;C>ö)6F

tscase

$hCe(*;A)=>F $;-r-id$,^;tf e$,#;A
 tssub

\-($;C>ip;6)eF

In summary, we have successfully established a typing discipline for states. What remains to
be shown, is that any execution on the abstract machine preserves types. Specifically, we prove,
that the type of a state remains invariant during computation.

Theorem 7.3 (Local type preservation for small-step semantics)

IfV::\-S€F
and £ :: S =» S'
then h S' G F.

Proof: by case analysis on £ using Lemma 6.20, Lemma 6.37, Lemma 6.22, Lemma 6.7. A
detailed proof can be found in Appendix C. D

By a simple induction over the length of a computation trace, we generalize this result to the
transitive closure of the transition relation.

Theorem 7.4 (Type preservation for small-step semantics)

IfV::S =^ S'
and £::\- SeF
then h S' eF.

Proof: by induction on V using Lemma 7.3. A detailed proof can be found in Appendix C. D

Note, that in that similarly to the proof of Theorem 6.38, neither this proof relies on the
termination side condition (5.1) or the coverage side condition (5.2). In fact, even without these
two side conditions, the small-step operational semantics is type-preserving.

In general, we are not interested in computations that terminate prematurely but only in
computations that terminate with a legitimate return value. We will show in Section 7.3 that no
computation can terminate prematurely. Legitimate states which mark the end of a computation
are called final states. Their main characteristic is that their continuation stack is empty, and
their program a value, which cannot be evaluated any further.

Definition 7.5 (Final state) Let $ be a parameter context and V be a value. $;*>F is called
a final state.

Any computation trace, which starts in an initial state ($;*>P, for any regular $, and any
P) ends in a final state whose parameter context is $ again. The main insight is that trnew and
trnewC are the only two rules that can insert and retract parameter blocks from <&.

191

192 7.2. TERMINATION

Lemma 7.6 (Parameter context preservation)

then $ = <!>'

Proof: by inspection of the transition rules. □

In summary, we have defined a small-step operational semantics that can be executed on
an abstract machine. The semantics is type preserving (i.e. partially correct), which means
that once a well-typed program is executed, the return value will also be well-typed. M2

proof terms can be directly executed on this machine, and without proof we conjecture that
it computes exactly the same value one would expect when examining a proof term with the
big-step operational semantics defined in Section 6.5.

Independent of this conjecture, we continue our analysis of termination and progress prop-
erties with the small-step semantics. Once shown that these two properties hold we have proven
that M2 is sound.

7.2 Termination

In order for M2 to be a sound logic, all its proof terms must be realizers, that is that once applied
to arguments, their computation eventually terminates and return the appropriate existentially
quantified witness objects. Recall that recursion and case analysis are designed in order to
support reasoning by induction over higher-order encodings in M2-

It is obvious, that without side condition (5.1) on Rctx not every computation terminates.
For example,

fun trans E\ E2 = trans E\ E2

has type

VT : tp. V£?i : term T. ME2 : term T. 3D : E\ =^ E2. T

but it is not a realizer for this theorem because it will never terminate once applied to any type
T, and well-typed terms E\ and E2. Moreover, this claim should not have a proof at all, since it
is clearly false; there are well-typed terms that do not parallel reduce to each other. Thus, that
all recursive functions in M2 terminate is a necessary precondition for the soundness of M2 .

Why doesn't this function terminate? It doesn't terminate because in the recursive call the
argument vector E\ E2 is not smaller than the vector of arguments the function is initially
called with. Instead, we must require for it to be strictly smaller, according to some well-
founded ordering. This observation is the fundamental insight which allows us to design an
appropriate syntactical criterion for side condition 5.1. Recall that in Section 5.6.1 where we
introduced the rule Rctx, we already established a semantic termination condition. In essence,
we can directly apply the results of previous work by Rohwedder and Pfenning [R.P96] where
they analyze lexicographic and simultaneous extensions of the subterm ordering. Other more
complex terminations orderings are still work in progress.

In this section we discuss the matter of termination which we split into three parts. We
first impose a restriction on the form of proof terms in Section 7.2.1 before we define a syn-
tactic criterion for side condition 5.1 in Section 7.2.2. We then argue in Section 7.2.3 that the
computation of any proof term on the abstract machine is always terminating.

192

CHAPTER 7. REALIZABILITY 193

7.2.1 Syntactic Restriction on Proof Terms

In order to simplify this presentation, we pose a few more syntactic restrictions on the form of
proof terms. First, we consider only proof terms that start with a leading yux €1 F. P where P
itself does not contain any other occurrences of recursion operators. Therefore, we can easily
localize the occurrences of the recursion variable x in the proof term. Because of an earlier
restriction, we only examine proof terms which are in the ^-fragment of M2- Thus we can easily
analyze all complete argument vectors in the recursive calls and compare them to the originally
given one. Unfortunately, because of the distributed character of function calls arguments might
be splattered all over the term. It goes without saying, that reasoning about proof terms in this
generality is extremely complicated and convoluted. Therefore — as second restriction — we
also restrict the form of recursive calls.

Typically, a recursive call is expressed via a list of declarations. To simplify matters, we
only consider proof terms that use one let constructor to describe each recursive call and each
call to a subroutine. Naturally, each declaration block may be preceded by several parameter
block introductions. As example, consider the pbeta/pbeta-case in the proof of the diamond
Lemma 3.7.

dia (pbeta (Xx : term T.Xu : x 1
x. D[x u) Dl

2

(pbeta (Xx : term T.Xu : x
1

x. D{ x u) Dr
2

let
m 1 new x : term T,u:x =4> x

val (Pi xu,P2 zu) = dia (D[X U) (D\ X U)

in
let

val(Qi,Q2) = diaZ?£z>$
val Ei = subst Pi Qi
val E2 = subst Pi Q2

in
(Ei, Ei)

end
end

The first application of the induction hypothesis can be represented in M2 in many different
ways, but for the purpose of this thesis, we require that it has the following form (we omit all

193

194 7.2. TERMINATION

type and formula annotations):

let

v (x : term T2,u:x ==> x)L.
yi=diaTi,
Y2 = yi Ei,
y-s = yzE{,
y4 = y3 E[,
y5 = y4 (D[xu),

yc = ys (D[xu),
(E[,y-)=y(t,

<^2,yg) = ys
in

yi...y9 are only auxiliary variables which bind partially instantiated proof terms. Throughout
the remainder of this chapter, we only consider functions in M^ which are of this form and in
addition which never reuse any of the auxiliary variables elsewhere in the proof term. In order
to have a convenient form of revering to a recursive call in a proof term, we use the following-
shorthand notation.

v {x : term T2, u : x =U x)L.{E[x, P} XU.,P2XIL)= dia T} Ex E\ E\ {D[X U) {D\ X u)

It seems as if these two restrictions limit the expressive power of M%- This is not true. There
are two reasons: First, the subset we are considering is certainly superset of the surjective image
of the naive formulation of the desugaring function. Thus, our termination argument applies
to every function that we can write down in ML-not at ion. Second, we strongly believe, that
any program P £ F can be transformed into a program P' e F which lies within this fragment
of M-2- An exact investigation of this issue is left to future research, when we extend termi-
nation orderings beyond extensions of the subterm ordering and allow arbitrary well-founded
termination orderings.

7.2.2 Syntactic Termination Criterion

We begin now with the discussion of a syntactic termination criterion for side condition (5.1). As
example, consider the proof of diamond Lemma 3.7. The corresponding M~$ function expects
six arguments, and it has therefore the following form:

/idia. AT : tp. AE : term T. AE1 : term T. AEr : term T.

AD' : E =k> El. ADr : E =^> Er. ...

In several places in the body of this function (indicated by ...), dia is used as the head of a
recursive call. After adding syntactic sugar, the recursive calls in the pbeta/pbeta case (see
Figure above), for example, are of the form

dia (D[x u) (D\ x u)

194

CHAPTER 7. REALIZABILITY 195

and

where the variables in the head of the function have been instantiated as follows.

dia Di, Dl

T = Ti
E = (app (lamJSi) E2)
El = (E{ E\)
Er = (E[Er

2)

Dl = pbeta (Xx : termT2. Xu : x => x. D[X U) Dl
2

Dr = pbeta (Xx : termT2. Xu : x ==> x. D\ x u) Dr
2

Clearly, the argument vector decreases with each recursive call, because D[, Dl
2 are subterms of

Dl, and Dr
XlD\ are subterms of Dr. The same observation holds for all other occurrences of

recursive calls, and therefore dia terminates overall.
In this work, we also consider simultaneous and lexicographic extensions of the subterm

ordering. Simultaneous orderings, on the other hand, also extend subterm orderings. The proof
of the diamond lemma, for example, satisfies the simultaneous ordering [Dl Dr] which means
that either Dl or Dr becomes smaller in every recursive call. But unlike for lexicographic
orderings neither Dl nor Dr can ever become bigger.

Another example is the cut-elimination theorem for classical or intuitionistic logic. It requires
a termination ordering which is lexicographic in the cut-formula A, and simultaneous in the
left derivation Dl and the right derivation Dr [Pfe95]. Formally, this ordering is written as
{A [Dl Dr}}.

For mutually recursive functions we have to precisely track how the different functions call
each other. We do this by introducing positions which are lists of variable names, bound in the
different mutually recursive parts of a theorem, as we used it for the proof of Lemma 4.11.

Definition 7.7 (Termination order)

Position: P ::= (x\,... ,xn)
Termination order: O ::= P | {Oi,..., On} | [0\,... ,On]

For simplicity, we omit the mutual recursive case from this discussion. It is entirely orthog-
onal to this development an can be easily added. We write 'order (O, M\ ... Mn)' to extract the
vector of significant arguments for the well-founded ordering. The comparison functions '<o'
and '<o' on those vectors are defined as in [RP96], and <o is well-founded for any ordering O.
We specify a syntactic termination condition for Rctx inspired by [RP96].

Definition 7.8 (Termination condition for Rctx) Let /ix G F. Kx\ : A\. .. .Axn : An.P a
proof term, O a termination order, v p\. ...v p^. ... = x M\ ...Mn a recursive call in P,
valid in ^; A and ip a substitution ty \- ip G x\ : A\,..., xn : An.

We say, that this recursive calls satisfies the termination condition if and only if

order (O, Mi... Mn) <o order (0,xi[i/)]...xn[tl)])

One important property of Rohwedder and Pfenning's termination order is that the well-
foundedness of <o is preserved under substitution. Formally, if

order {0,Mi ... Mn) <o order (0,xi[ij>]... xn[ip])

195

196 7.2. TERMINATION

in \I/ then
order (O, M1W]... Mn[xß']) <o order (O, xxty; o tf/]... xn[^ o <//])

for all t/Z for which *' h ip' € * holds.
The choice of the termination order is very important especially for automated theorem

proving. It dictates the general form of the induction hypothesis. To see that the proof term
dia terminates, for example, it is enough to check all recursive calls via the termination order
[Dl] (see Figure 4.4)! For proof generation on the other hand, we can use the termination order
to encode additional information about recursive calls. There are infinitely many recursive; calls
satisfying [D1] because Dr remains unrestricted. On the other hand, if we use the termination
order [Dl Dr], there are only very few recursive call satisfying this termination order.

7.2.3 Termination Theorem

With the syntactic side condition specified in Definition 7.8. all recursive functions in M%
are terminating. Under the regular world assumption, a program is computed with respect to a
regularly formed parameter context $. Apart from this, the program must be closed with respect
to meta-variables and LF-variables. We assume that all meta-variables acting as sub-routine
calls have been instantiated by terminating proof terms.

The proof of the termination theorem is based on the following idea: We record the argument
vector the function is called with. When the abstract machine executes a recursive call, we com-
pare it to the argument vector of the recursion variable. By unfolding Condition 7.8 we ensure,
that the new argument vector is smaller. In addition, in all other situation the abstract machine
continues by executing a subterm of the current program (or a list of cases) and therefore, the
computation must eventually terminate.

Theorem 7.9 (Termination) We consider the evaluation of a function of type
V.Ti : A\. ... \/xn : An. 3yi : A\. ... 3ym : A'm. T applied to arguments M\,..., Mn in a pa-
rameter context $. The termination order is O and all procedures (used as lemmas) terminate.

1. If S = Q;C > P and P is not a value

then S =^ $; C > V
or the computation terminates prematurely.

2. IfS = $;C> {il>; S) ~ fi
then S ^4> $; C o V
or the computation terminates prematurely.

Proof: by induction lexicographically on 'order (O, M\ ... M„)' and (P(2) and f2(3)). A detailed
proof can be found in Appendix C. □

The evaluation of any program which — syntactically speaking — introduces only one out-
ermost recursion variable and whose recursive calls and appeals to lemmas appear only in their
natural form (without unnecessary reuses of auxiliary introduced meta-variables) must termi-
nate given that side condition 5.1 is satisfied. The computation may still terminate prematurely
because of an inexhaustive match exception from a case statement, but from the results discussed
in the next section we learn that this cannot happen.

196

CHAPTER 7. REALIZABILITY 197

7.3 Coverage

In this section we show that the evaluation of any program that is not a value always makes
progress. By inspecting the transition rules defining the small-step operating semantics, we can
easily recognize, that all but three rules are defined in a way that they must make progress. For
every right hand side of such a transition rule there is another rule whose left hand side matches
it. Moreover, for every program, there is a rule that matches it. The three exceptions are the
rules trcase, tryes, and trno. What we have to guarantee is that once trcase is applied, there is
a case in Q which triggers tryes.

What would happen if there is no such case in ffl In such a situation trno would be applied
for all cases in Q until Q = -, and consequently, the evaluation would get stuck because there
is no rule which applies to an empty fi! This situation must never occur. It would violate the
important progress property.

Thus, we need to show that given side condition 5.2 is satisfied Q, covers all possible cases.
We first introduce the notion of most general unifier in Section 7.3.1 whose existence is crucial in
our argument. In Section 7.3.2 we specify a syntactical and machine checkable coverage criterion
for side condition 5.2, and finally, we show in Section 7.3.3, that every program that satisfies
this syntactic criterion makes always progress.

7.3.1 Motivation

Our coverage analysis relies on the fact that canonical forms in LF are inductive [HHP93, Coq91].
Since every well-typed object in LF possesses a canonical form, case analysis of an object reduces
to inductive reasoning about the canonical forms of its type. Unlike in Coq or Isabelle where
datatypes are defined by a set of finitely many constructors whose type satisfy the positivity
condition, the situation is different in our setting. We are considering arbitrary higher-order LF
objects well-typed under the regular world assumption. Our design is sound, because we know
that every object in LF has a canonical form, independently if it is a function or not.

To illustrate the idea behind the coverage, we return to Example 5.12, and observe, that
under the regular world assumption, the E : term T can take three different (most general)
forms:

1. E' = x:termT

2. E" = lam {\x : term Ti.E1 x) : term (Ti arrow T2)

3. E'" = app Ei E2 : term 7\

The goal of coverage is to decide, if the list of cases given in Example 5.12 really covers all the
cases and indeed, intuitively, in this situation it does. Consider the following list of cases Q. E'
is being matched by the first case, E" by the second, and E'" by the third.

T : tp, (x : term T,u : x =U x)L >T/T,x/E ^ ...

Ti : tp, T2 : tp, E' : term Tx -> term T2 o(Ti arrow T2)/T, lam (Xx : term Tx. Ex x)/E^r ...

Ti : tp,T2 : tp,#i : term (T2 arrow Ti),
E2 : term T2 >TX/T, app Ex E2/E ■->...

But how exactly do we decide this property? The answer lies in the proper analysis of
generalized substitutions as part of each case declared in Q,. For this purpose of this example,

197

198 7.3. COVERAGE

consider an environment r\ (also a generalized substitution), where we presuppose a type 'nat'
for natural numbers.

{x' : term nat, «' : x' =U x')L t- nat/T, x'/E £ T : tp, E : term T

To see that the first case covers this environment one has to provide a new environment ?/, such
that {T/T, x/E) o rf = r\. Indeed such an environment exists and it has the following form.

{x1 : term nat,«' : x[=U x')L h nat/T, (x',u')/(x,u) £ T : tp, (x : term T,u : x =U x)L

Therefore, in the general case if we want to guarantee that a list of cases Q contains an applicable
case (W > tp i-» P) we have to ensure, that for every \I/o r- ip' £ \I;, there exists a substitution
*o h ip" £ *' such that t/; o </>" = tj/.

This small example already exhibits several important aspects of our design. First, the list of
cases from Example 5.12 is a result of analyzing cases over one LF object E : term T. In general,
this need not to be the case, because in Example 5.13 we distinguish cases over two LF objects
simultaneously. Second, pattern matching and coverage analysis are very closely connected
to generalized substitutions, their decompositions, and as we will discuss below, unification of
types. Third, our coverage criterion excludes impossible cases. For example, if we return to
the formalization of the diamond Lemma 4.6 we first, analyzed four cases for Dl, but only one
for Dr, namely the parameter case. We deduced from typing constraints that, the other three
candidates for Dr cannot occur.

In order to develop a formal coverage criterion, we must develop a complete algorithm to
generate all possible forms of tp' above. Our algorithm is defined by iteration, that expects one
substitution together with its co-domain as input and generates a list of refining substitutions.

Starting from the identity substitution id^ it successively applies a refinement step by non-
deterministically picking one variable declaration from the co-domain of the current environment,
and analyzes its forms in a most general fashion. The result is a set of generalized substitutions
describing all possible shapes of $.

Intuitively, the algorithm computes a list of "forms" describing the most general form of
the environment, and by construction the coverage criterion is guaranteed to be satisfied. The
algorithm terminates if the following criterion is satisfied: every substitution in the returned
from the algorithm matches some case in fi.

In this presentation, however, we are slightly more restrictive and expect il not, only to
match the set of substitutions calculated by the coverage algorithm, but "to be equal" to it.
That means, we only allow fi's whose embedded substitutions can be generated by our coverage
algorithm. This restriction can be easily lifted, but because we are predominantly interested in
automation of case analysis we leave this issue to future work.

The workings of the coverage algorithm is best illustrated by an example. First we consider
the identity generalized substitution:

T' : tp, E' : term T h T'/T, E'/E £ T : tp, E : term T

What are the possible forms of E'l There are the three possibilities as already mentioned above.
First E' = x:

T" : tp, (x : term T",u : x =U x)L\-x: term T"

198

CHAPTER 7. REALIZABILITY 199

Since E' — x, their types must be convertible (term T" = term T"), and therefore T" = T"!

T" : tp, (s : term T", u:x=Ux)L\- T"/T, x/E G T : tp, E : term T

The second possibility is that E is instantiated with a term starting with lam.

T'{ : tp, T'2' : tp, E" : term T'{ -> term T^' h lam (As : term Tf. E"x) : term (Tf arrow T%)

By using the same argument as above, we obtain that E = lam (Xx : term T\.E"x), and that
the T = T{' arrow T'2'.

T{' : tp, T-f : tp, E" : term T[' -> term T-f
h (T{' arrow 7^')/T, (lam (As : term T['. E"x))/E £ T : tp, £7 : term T

The third substitution for E = app Ei E2 follows from a similar argument. It is easy to see
that all substitutions are strict in their co-domain.

When we compare E : term T and lam (As : term T". E"x) : term (T" arrow T2) we
conclude T = T" arrow T^. Technically speaking, the operation hidden behind this comparison
is unification. It cannot be matching, because in a different example E:s type might be more
constrained. For example it could be E : term ((Ti arrow T2) arrow T3), and then T" =
(Ti arrow T2) and T% = T3.

The second case of this example exhibits that the unification problems in question are cer-
tainly not first-order, but higher-order due to the higher-order character of the underlying rep-
resentation. Higher-order unification problems are in general undecidable [Hue73], and therefore
we must restrict our considerations to problems which are decidable namely those which guar-
antee the existence of one most general unifiers. Certainly, one can generalize this work to
unification problems that have finite complete sets of general unifiers, but in all our experiments
the a one element complete set of general unifiers suffices.

Most unification problems we are dealing with lie in fact in the Miller's pattern fragment
[Mil91] which guarantee most general unifiers if they exist, but some of our unification problems
fall outside the pattern fragment. Those unification problems have in our experience non pattern
occurrences of the form "existential variable applied to existential variable", but in most cases
they are still decidable by reordering the unification goals, in a way very similar to the way how
we extended pattern matching to strict matching in Section 6.4.2. Unlike in matching, even if
all existential variables occur in some strict position in the unification problem, it still need not
guarantee decidability. This is clearly exemplified by the following example

c Xi X2 Mi M2 (Xi M1)&cY1Y2 Ni N2 {Y2 N2)

where 'c' is a constant and Xi,X2, Mi, M2,Yi,Y2, Ni, N2 are existential variables, all occurring
in strict positions in this equation. It is easy to see, that this unification problem does not have
a most general unifier because it reduces to a flex-flex pair X\ M\ RS Y2 N2 ■

Therefore, we restrict the following discussion to unification problems for which most general
unifiers exists. In addition, we expect the each variable in the co-domain of the unifying sub-
stitution occurs strictly in it, otherwise we might not be able to execute the proof term on our
abstract machine. This is not just a technical restriction but it also has practical consequences.
Case analyses which fall outside this fragment are simply not valid in M2 and can hence not be
expressed. In this work we do not present a unification algorithm for this fragment, we merely
presuppose the existence of most general unifiers.

199

200 7.3. COVERAGE

Definition 7.10 (Unifiers) We follow standard practice and write M\ « M2, and A\ ~ yl2

for equations describing a unification problem N. ip is a solution for N if M\[ij)] = M2[i/>] for
each equation Mj « M2 G N and Aity] = A2[iJ>] for eac^ equation A\ ~ A2 G AT. Formally, we
write ip G urn/?/ (A*"). VTe say that a is a most general unifier of N if for every other solution
i\), there exists a if)' s.t. a o ?// = ip. Formally we write a G mgu (N).

We return to the proof of the substitution Lemma 4.5 in order to determine the exact form
of the unification problem. It clearly shows how declarations of functional type must be split.
We consider a snapshot of the context shortly before the case analysis over D\ takes place.

Ti : tp,T2 : tp, E\ : term T2 -» term Ty,E[: term T2 -> term TUE2: term T2, E'2 : term T2,

£>! : ny : term T2.y ^ y ^ (£j y) =±> (E[y).D2 : £2 =^ £2

Di is of functional type. What possible forms can it take? We extract this list from the proof
term from Figure 4.3.

D\ : Uy : term T2. y =$> y —>■ x => x

= Xy : term T2. Aw : y =>■ y. u

D\ : uy : term T2. y ==> y —> y =$■ y
— Xy : term T2. Xv : y => y. w

PJ3) : Uy : term T2. y =^ j/ -> (app (lam (A*. £, y 2)) (£2 y)) =^ {E\ y (E!2 y))

= Ay : term T2. Aw : y ==> y. pbeta (A.x : term Ti. Xu : 3; => .T. D\ y v x u) (D2 V i>)

D[
4)

 : Uy : term T2. y =^> y -)• (lam (A«. £it/z)) =^ (lam (A«. £{ y 2))

= Ay : term T2. Aw : y => y. plain (A.r : term T\. Xu : x => x. D\ y v x u)

D™ : Uy : term T2. y ^ y -> (app (^ y) (E2 y)) =U (app (£', y) (£2 y))

= Ay : term T2. Aw : y => y. papp (I?i y w) (Z?2 y ?>)

The variables marked with a hat such as E and D are new. Going back to the algorithm, which
splits variables from the co-domain of a substitution, we must therefore pay special attention to
variables of functional type. Also in this example, we initialize the coverage algorithm with the
identity substitution.

Ti : tp, T2 : tp, El : term T2 ->• term TUE[: term T2 -> term TUE2: term T2, E'2 : term T2,

Di : ny : term T2.y =4 y -> (E} y) =U (E[y).D2 : E2 ^U E'2

hT1/TuT2/T2,El/E1,E[/E[,E2/E2,E!2/E!2,Dl/Dl,D2/D2

G Ti : tp, T2 : tp, Ex : term T2 ->• term Ti, E\ : term T2 -» term Tj, £2 : term T2,E'2: term T2,

2?i : uy : term T2.y =U y -> (£1 y) =4 (£?{ y),D2 : E2 =U E!2

The coverage algorithm picks £>i for splitting, and from its type it deduces, that there are

two local parameters, y : term T2 and w : y => y which may occur free in its body. This
means, that when we consider refining D\ to app D\ D2 we must let D\ and D2 depend on y, w!
Therefore, we rely on another algorithm which raises the types of the arguments by introducing
those new dependencies. According to its intention, the algorithm is called raising. Given the

200

CHAPTER 7. REALIZABILITY 201

type A of a constructor, raise (r, A) generates a list of raised argument variables in form of
a generalized context and a refined target type. Note, that in order to execute raising on the
LF level we actually invoke the abstraction function defined in Section 6.2.2 which accounts for
subordination. In the example of papp above,

raise (y : term T2, v : y =>■ y,
Uti : tp. m2 : tp.
riei : term (t2 arrow ti). Ue[: term (t2 arrow ti). Ile2 : term £2. Ue'2 : term t2.

11 1

ei => e'j ->■ e2 ==> e'2 -» (app ei e2) => (app e^ e2))
= fi :tp,f2:tp,

Ei : term T2 -> term (f2 arrow fi),E[: term T2 -> term (f2 arrow fi),
E2 : term T2 -» term f2, E2 : term T2 -> term f2,

Z>1 : Ily : term T2.y ^» y -> (Ej y) =i» (Ej y),

£>2 : Ily : term T2.y =4 y -+ (E2 y) =4 (E2 y)

> (app (Ej y) (E2 y)) =^ (app (EJ y) (E2 y))

As discussed already the subordination relation satisfies that

term ^ tp
arrow -fc tp
arrow ^ term

and therefore

n(y : termT2,u : y => y).tp = tp

n(y : term T2,v : y ==» y). term T2 = term T2 -> term T2

which explains the form of the raised version of the type of papp. In general, raising is defined
by the judgment

Raising: v£>i \- raise (r, A{) = (\I/2 c> A2)

and two rules specify the behavior of the raising algorithm.

raisebase
*h raise (T,B) = (->UT.B)

*i,a;:nr.Ai h raise (T,A2[x T/x]) = (*2 > A')

*i H raise (r,IIa;: Ai. A2) = (x : Iir. Au *2 > A')
raisepi

Lemma 7.11 (Properties of Raising)
PhM:i
and * h raise (r)A = (*' > E)
tfien *, *' h Ar. M ($' T) : nr. E

Proof: by induction on A. D

Once the raised version of papp is calculated, we have to unify the originally picked

£>i : Uy : term T2.y =U y -> (Ex y) =±» (J5[y)

201

202 7.3. COVERAGE

with the refined version (where we are overly explicit in the arguments applied to the constant).

Ay : term T2.Xv:y =U y. papp fx f2 (E, y) (E[y) (E2 y) {E'2 y) (£», y v) (A y v)

: Uy : term T2. y =U y -+ (app (E, y) (E2 y)) =U (app (E[y) (E2 y))

As result we obtain the following two equations:

D\ » Xy : term T2. A« : y => y.

papp f, f2 {Ey y) (E[y) (E2 y) (E'2 y) (7.1)

(Z>i y v) (D\ y v)

Uy : term T2. y =4- y ^ Uy : term T2. y => y

-»• (E, y) =4 (£(y) ~ -> (app (A y) (£2 j,)) =^ (app {E\ y) (E>2 ?/))
(7.2)

Equation (7.1) binds D\, and Equation (7.2) expresses that the types of both participating
objects must be unifiable.

In this situation, the unification problem has one most general solution. We show a version
of the solution substitution whose domain equals the co-domain of the substitution modeling
the environment we have originally started with.

fi/T^Tz/TUapp (Ex y) (E2 y))/Eu (app (E[y) (E'2 y))/E[,E2/E2,E!2/E!2,

V-> = Xy : term T2. Xv : y =U y. papp T, f2 (£, y) (E[y) (E2 y) {E'2 y) (£>, y v) (A y v)/Du

D2/D2

The co-domain of this substitution can now be easily read out of substitution itself.

*=fi :tp,f2:tp,T2:tp,
E] : term T2 ->■ term (f2 arrow fi), £{ : term T2 -> term (T2 arrow fi),
£2 : term T2 -> term f2,E!2: term T2 -» term f2,
£2 : termT2,£2 : termT2,

Di : uy : term T2.y =U y -> {E{ y) =U {E[y),

D2 : Uy : term T2. y =^> y -> (E2 y) =U (E'2 y),

D2 : E2 =U E'2

Note that by construction \I> is strict in V as required. We want to stress, that while not all
variables are involved in the unification operation their types might be. The substitution ij), for
example, acts as identity on T2, E2,E2 and D2, and the change in types is best observed directly

in the proof of the diamond Lemma 4.6. There, while splitting the left reduction of E => El,
case analysis instantiates E with another term, e.g. a parameter x in the global parameter case,

and therefore the type of the right reduction Dr : E => Er changes to Dr : x =>■ Er — even
though Dr itself does not change. New information acquired during case analysis may therefore
be recorded in the types of other assumptions.

Back to our example. One can easily verify that the substitution tj> is most general. Given
any solution r\ of the unification problem specified by Equation (7.1) and Equation (7.2), it can
be rewritten as if) o rf. As a matter of fact, this observation already provides the basic insight

202

CHAPTER 7. REALIZABILITY 203

into our coverage argument, and the reader is invited to look out how this fact is used in the
proof.

Naturally, in general, the unification problem may not have a solution. There are a few
ways how unification in Equation (7.2) can fail: There can be a constant/constant clash, a
constant/variable clash (where the variable is locally bound in the term), a constant/parameter
clash (where the parameter is represented by a parameter variable in the generalized context) a
variable/variable clash, a variable/parameter clash, or a parameter/parameter clash. If any of
these clashes should occur when analyzing cases, one can be sure — because of the uniqueness
of typing — that the affected case does not apply. The user is invited to himself/herself, that
the algorithm also returns the other four substitutions necessary to cover D\ ',... ,D\ '.

In summary, we have motivated an algorithm to compute a complete list of substitutions
which describe all possible instantiations of any generalized context \&. In the next section we
formally define this algorithm in form of a syntactical criterion for side condition 5.2, and in
Section 7.3.3 we prove, that it indeed guarantees correctness. M.% owes the feasibility of this
approach to the logical framework LF and pattern unification, in particular, the existence of
canonical forms, and the the existence of most general unifiers.

7.3.2 Coverage Condition

We begin now with the formal presentation of the coverage algorithm. The goal is to establish a
criterion on the case rule that guarantees that any program of the form 'case (?/>; 5) of $7' covers
all possible cases. For the sake of this exposition, we are very restrictive about the form of f£;
specifically, we require that all cases in U are in one-to-one correspondence with the outcome of
the coverage algorithm sketched in the previous section. The reason is, that the implementation
described in Chapter 8 follows the outline of this algorithm to generate cases hereby trivially
guaranteeing its correctness. On the other hand, one can easily extend this criterion to check if
a given set of cases really covers all possibility, but we leave this issue to future investigation.

Recall that Q is defined as a list of cases, and each case has the form (^ t> tp h-> P). For
this discussion the form of the different P's is unimportant. What is important are the \I/'s and
the ^I'S, the main players in the coverage algorithm sketched above. As we will see below, the
outcome of the algorithm is guaranteed to cover all cases, and thus we introduce as an auxiliary
construct a list of pairs (\& > ip) which we call a cover for Q.

Cover: u ::= • | LO, (* > ift)

Next, we formalize the coverage algorithm. Several judgments are involved in its definition and
we discuss each one and its implementation in turn. According to the canonical form theorem,
there are three possible head constructors for each object of a type; a constant defined in the
signature (Constant Coverage), a local parameter introduced by a A-binder in the case that it
is a function (Local Parameter Coverage), or a global parameter which is part of the parameter
context (due to the regular closed world assumption). All three cases are treated in a very similar
way, special attention has to be paid to the last case: The form of parameter contexts is regular,
and it is inductively described by context Schemas; context Schemas consist of several context
blocks, and each context block of several BLOCK-declarations. Every possibility has to be
accounted for, that means we have to traverse and examine each declaration in every BLOCK-
block (Global Parameter Coverage) of the specified context schema (Schematic Coverage).

203

204 7.3. COVERAGE

There are two special judgments combining partial coverage results; first, there is 'single
coverage' which combines the results of splitting one single variable, and there is a judgment
that allows the algorithm to successively and non-deterministically pick one variable from the
co-domain of an already computed cover and split it. The result is a new, further refined cover.

Judgments

Constant Coverage: \I>i: x : IHV Bx\ ^2 \~ £ ^> w cover
Local Parameter Coverage: ^i;x : UTX. Bx; \t>2 1~ T » UJ cover
Global Parameter Coverage: ^\\x : UTX. Bx: ^2'-, ^3 t~ P ^ w cover
Schematic Coverage: \&i; x : UTX. Bx; ^2 l~ S » u cover
Single Coverage: ^hu cover
Multiple Coverage: f hu cover*

These six judgments specify the coverage algorithm and its operational meaning is defined
by inference rules. The first three judgments are defined by three rules each. For example, there
is a rule (whose name ends in empty) for the empty signature, the empty local context, and
the empty BLOCK-block. Depending on if a most-general unifier can be determined using the
construction sketched above, there is a rule (whose name ends in unify) which adds a new entry
to the cover. If a most-general unifier does not and cannot exist there is a rule (whose name ends
in skip) which skips ahead and examines the next constant/local parameter/global parameter.

As representation invariant, in first two and the fourth judgment, ^i,./: : Urx. Bx,'i'2 is a
valid generalized context, and x is the assumption for which cases are to be considered. Similarly,
in the third judgment, ^\;x : IHV Bx; ^.'2; ^3 is a valid generalized context. What exactly $3
stands for will be discussed below.

Rules for Constant Coverage

The left hand side of the judgment for constant coverage, consists of three parts. In fact, if one
replaces the ';' by a ',' the left hand side forms a general context. Enclosed by the two ';' is
the declaration which we want to split over. The IHV Bx is a short hand for the type of x that
may be a functional introducing local parameters Tx = y\ : A\,..., y„ : An. If we were perfectly
explicit, we would write

IHV Bx = Uyi : Ai. ... Uyn : An.Bx

where Bx is atomic, i.e. not a function type.
The S in between the H and the » is the structure we are examining for possible head

constructors of x. For constants, it is the signature, for local variable, it is some context T, and
for global variables we simply use a variable block. Finally, LO is being returned, if we attach an
operational (bottom-up) reading to the rules. Therefore, if E = •, the returning cover will be
empty.
 ccempty
Vi;x : nrx.ßx;*2 r- • » • cover

The two following rules are best described by their operational interpretation. The coverage
algorithm examines a non-empty signature S,c : UTr.Bc. In the example above, c would be
papp, and Iirc. Bc its type. Is c a valid head constructor for x? The answer is yes, as long the
type of c after raising it and applying it to the right argument (exactly the same way as we have
sketched it in the previous section) and the type of x have a most general unifier. We write \I>'

204

CHAPTER 7. REALIZABILITY 205

for the new set of variables which are the co-domain of the substitution. \I/C correspond to the
list of variables marked by a hat as the outcome of the raising operation in the previous section.
If such a unifier exist, we call it ip, then we calculate a cover u for the remaining signature E,
and return u>, (<3/'> ip).

*i; x : nrx. Bx; *2 l~ E » u) cover
ccunify

$>i;x : UTX.BX;^2 HE,c: UTC.BC > w, (*' > V>|*) cover

* = *1,a;:nrx.5a;,*2
* h raise (rx, nrc. Bc) = ($c > nrx. s£)
*' h v = mgu (niy BX « nrx. ^, z « Arx. c (*c rx)): *, *c

*' h (• > V) strict

In addition, we require that the new general context \J/' is strict in ip. We are very much
convinced, that the way we have implemented unification in Chapter 8 only returns pairs (^'\>ip)
that are strict, but because we do not present the unification algorithm in this thesis, we stipulate
strictness as a requirement, until we will have described the unification algorithm in future work.
Should there be a non-strict substitution as result of the unification operation, there cannot be
a cover.

Dually to this rule, if the unification algorithm fails because of a clash, we simply return the
cover u) calculated for the remaining signature E.

*i; x : niV Bx; *2 t~ E » u cover
ccskip

*i; x : nrx. Bx; *2 r- E, c : Iirc. Bc » u cover

h raise (rx, nrc. BC) = (*c > nrx. B'C)
nrx. #x « nrx. B'C, X « Arx. c (*c rx) do not unify

If the unification problem fails for other reasons but a clash, the coverage algorithm will not
return an answer. Non-strict substitutions ip' and non-clash failures are a strong indication, that
it cannot be decided if a unification problem has most general unifiers or not.

Rules for Local Parameter Coverage

The rules for local parameter coverage cover cases such as D\ ' in the example in the previous
section. D\ can be of the form of a function, which uses the locally introduced argument v in
the body.

Dp : Uy : term T2.y =^> y -> y =^4> y

= Xy : term T2. Xv : y ==> y.v

From the perspective of the coverage algorithm, semantically, there is no difference between a
constant and a locally introduced parameter. The parameter is essentially seen as a dynamically
introduced constant, and this view is reflected in the three rules below. The left hand side of the
h symbol in the judgment for local parameter coverage is the generalized context, which exposes
the variable x and its type Iirx..Bx. As above, x is instantiated by an object that expects as

205

206 7.3. COVERAGE

arguments Tx. The algorithm considers all cases with parameters declared in Tx as head. Thus,
the judgment iterates through rr and in order to avoid confusion, we denote the intermediate
versions of this context with F. If T is empty, an empty cover is returned.

Icempty
*i; x : niY Bx; <I>2 t~ • > • cover

If T is not empty but contains a declaration of a parameter p : HTp. Bp, then we use exactly the
same technique as above, by raising ;/s type by rr and trying to unify the types. Should the
unification process terminate successfully, with a strict most general unifier if) and co-domain
W, we proceed as above and return an extended cover.

#1; x : nrT. Bx; *2 ^ T » to cover
Icunify

$i]x : UTx.Bx;<i>2 l~ I\p : UTp.Bp » u, (#' t> if>\q) cover

* = *I,.T :UTX.BX,^2
* h raise (rx, IHy Bp) = (% > UTX. B'p)
' h y; = mgu (nrv ^ « nr.,. B'P, X « ArT. j> („ r,)): *, *p

*' h (• >i/>) strict

Should such a unifier not exist (and again, unification must have failed with some kind of clash
indicating that it is really impossible to unify these two types) then the coverage algorithm
returns the cover it has calculated for the remaining list of parameters.

*i; x : nrr. Bx; *2 H T » UJ cover
Icskip

$i;x: IHY Bx; #2 HT.p: UFp. Bp » w cover

* = *1,a;:nrs.ßa;,*2
* h raise (r,., niy BP) = (*p > nrx. sp)
nrT. 53. « nrx. B'p, X « AIVp (*p rx) do not unify

With these two operations and under the closed world assumption, we can already calculate a
complete cover if we split a variable of arbitrary type.

Rules for Global Parameter Coverage

Under the regular world assumption, however, we must also consider the case that x : UTX. Bx

is instantiated with a parameter from the parameter context. Recall, that these parameter
contexts are in general finite, but arbitrarily long, and therefore it is infeasible to introduce a
case for each possible parameter from the parameter context. In Section 4, we have motivated
that under the regular world assumption, parameter contexts are regularly formed, and each
parameter block is an instance of one of finitely many block Schemas. In addition, we have
introduced a new variable concept that can range over those blocks, and we called them variable
blocks p. The regular structure of parameter contexts is a priori defined by the context schema,
which is part of any general formula. Thus, with the help of the context Schemas and variable
blocks, we can in fact examine coverage. Since we know that the parameter context is regularly
formed, we simply examine each possible block schema, and observe if it contains a parameter

206

CHAPTER 7. REALIZABILITY 207

which might be the head of x\ In the example from the previous section, for example, the body
of x could be u.

Dl : Hy : term T2. y =>■ y —> x =>■ x

= Xy : term T2. Xv : y => y. u

Therefore, it should not come as a surprise, that the structure of the rules for global parameter
coverage resemble the two blocks of rules already discussed. The only difference is that in these
rules, we range in addition over a variable block, and check each single declaration.

gcempty
tf 1; x : THY Bx; *2; *3 \~ ■ > • cover

Because of the form of context blocks and additional dependencies, we augment the left hand
side of the judgment with a third partial generalized context $3, which captures all SOME-
variables, and the entire variable block itself. We need ^3, because ^,^3 h- TiYg.Bg : type;
otherwise the appeal to raise type in the side condition below is not well-formed.

Consider the case that g : HTg. Bg is one of the parameter variables declared in p. Following
the two sets of rules above, we make all arguments of g dependent on Fx, and then try to unify
the raised base type of g with nrx. Bx. If the unification algorithm returns with a most general
and strict substitution, we return the new cover.

tfi;a;:nra:..Ba:;#2;*3l-p»wcaver
gcunify

tf 1; x : nrx. Bx; *2; *3 I- P, g ■ Uly Bg » w, ($' > VI*) cover

V = *ux:Iirx.Bx,*2
*, *3 H raise (rx, nry Bg) = (*9 > nrx. B'g)
*' h t/» = mgu (nrx. BX « nrx. B'g, x « Arx. s (*fl rx)): *, *3, *s

*' h (• t> ip) strict

And exactly as above, if the unification fails, g cannot be the head of the x, and therefore we
do not have to add it to the cover.

\I>i; x : nrx. Bx; *2; *3 H p » w cover
gcskip

*i; a; : nrx. £x; *2; #3 r- P, 5 : nr9. £s » w cover

* = *1,x:nrx.J5x,*2
*, *31- raise (rx, niy Bg) = (*ff > nrx. #9)
nrx.5x« nrx.^,x « xrx.g (*9 rx) do not unify

Rules for Schematic Coverage

Unlike the two first set of rules, the coverage algorithm must also traverse the context schema,
and check each block schema if it contributes new cases. In most of our examples, we dealt
only with one context block, but in practice, theorems are very likely to rely on many. We
have already seen in Section 4.2.3 one example of multi-block context Schemas, when we added
polymorphism to the simply-typed A-calculus.

The rules for schematic coverage, require renaming substitutions a that map schema contexts
C to generalized substitutions \I/: \& h a € C. They are defined in a straightforward way.

207

208 7.3. COVERAGE

We start, with the definition of schematic coverage. If the context schema is empty, we return
the empty cover
 scempty
*i; x : UTX. Bx; #2 \~ • » ■ cover

otherwise, there must be a context block SOME C\. BLOCK C2- We proceed by renaming C\
into a generalized context ^3, and a-convert C2 to a new variable block p. Then we examine
all cases which arise from p. using the global parameter judgment, and return the newly found
cases.

#1; x : nrx. Bx; #2 h S » u\ cover
*31- & e Ci
*i, x: nrr. BX, *2, *31- P =a [<r]c2

$1 ; x : IIIV ßr; *2; *3, PL H p > w2 cover
 — • scncxt
*i;.7: : UTX.BX; *2 I" S, (SOME Cx. BLOCK C2)

L » UULü2 cover

Rules for Single Coverage

All is prepared to combine the three parts of the coverage algorithm described above. The overall
coverage algorithm non-deterministically and successively picks variables from the generalized
context \I>, and splits them. This part of the algorithm is defined by two judgments, called single
coverage, and multiple coverage. Single coverage means, that u> covers all cases by refining one
variable.

*l; x : nrT. By, *2 l~ r.T » wi cover
*i; x : nr.r. Bx\ *2 hE»u2 cover

* = *i, x : UTX. BX,V2 *i; x : UTX. Bx; *2H5> w3 cover
—— single

$ h W!,W2,w;j cover

Rules for Multiple Coverage

The judgment for multiple coverage calls single coverage repeatedly and combines the results by
an easy substitution composition.

$hw cover . .
multiempty

multicons

$hw cover*

* I- u)\, (\P' t> ip),Lü2 cover* $'hu' cover

ty hwi,^ow',a>2 cover*

where
i/> o • = •

^o(w',(*">^')) = V°w',(*">^o^')

The coverage algorithm is designed to formulate a syntactical criterion for side condition (5.2)
attached to the case-rule in Section 5.6.2:

#; A h V; <$ € *'; A' *;A'hflef
 case

^Ar-casefrMJofneFty]

208

CHAPTER 7. REALIZABILITY 209

Informally, ft is said to cover all cases, if it can be guaranteed, that the stripped version of ft
are in fact generated by the coverage algorithm.

Definition 7.12 (Syntactic coverage criterion)

ty' h strip (ft) cover*

where we understand as stripping the operation that removes all H-> P from ft.

Definition 7.13 (Stripping)

strip (•) = •
strip (ft, (*'> ijj H> P)) = strip (ft), (#'>?/>)

In summary, we have presented a sophisticated algorithm to characterize the coverage prop-
erty of case analysis as a syntactic property of a proof term. That the coverage algorithm indeed
returns a complete set of covers is the main result that we present in the next Section. From an
experimental point of view, we want to point out that all examples from Chapter 3, and their
formalizations in Chapter 4 satisfy this criterion. The side condition itself is syntactic, which
means that it is easy to implement. Moreover, in the implementation of the meta-theorem
prover in the Twelf system, we use the coverage algorithm to generate the different forms of ft,
a process which we call Splitting. The Twelf system is described in detail in Chapter 8. From a
theoretical point of view, the design of this criterion is the final step in our quest to turn M\
into a calculus of realizers. That it satisfies the necessary properties is discussed in the next
section.

7.3.3 Meta-Theory

We begin now with the discussion of the theoretical properties of the coverage algorithm pre-
sented in the previous subsection. Any valid case analysis satisfying the syntactic criterion is
guaranteed to cover all cases, and in particular, when executing it on the abstract machine
defined in Section 7.1.3 the computation never runs into a state where it cannot make progress.

This subsection is organized as follows: First, we discuss some general properties about
substitutions. Second, we show that independent of the current environment, the abstract
machine always finds a case in ft, when it executes a case instruction. This property is called
liveness. Finally, we generalize liveness to progress.

Preliminaries

Well-formed generalized substitutions ip satisfy f' h i/) £ f. Each substitution of this form can
be easily restricted to an initial fragment of \I>. Consider, for example, # = *i,\I/2- By several
inversions on the typing derivation of tp, we can easily deduce that ip = ipi,tp2, and moreover
^'l-^iGfi. This simple property of substitutions is used several times in the proofs presented
in this section. Following common practice, we write tpi = ip\y1 in order to restrict ip to \l>i.

Lemma 7.14 (Restricting substitutions)

then *' h ip\9l 6 ^

Proof: by induction on \I>2 □

209

210 7.3. COVERAGE

Similarly, if we restrict the composition of two substitutions to a generalized context \I>, the
result is the same as if we had restricted the left substitution to $ before composing it with the
right.

Lemma 7.15 (Restricting compositions)
//tf2 H ifo e l'i
and *i h Vi G *, *'
f/ien (V-»i o ^2)1* = V;i I* ° ^2

Proof: by induction on the definition of substitution composition. D

A second concept, which is important in the proofs below, is that given a generalized substi-
tution, we can transform it easily into a meta-substitution. This process is called factorization,
because we can write (ijr, 5) as composition of two substitutions given that we know how to
factor ijj.

Lemma 7.16 (Factorization)
// $' \- ih e *o
and $0 h V;o G *
and $ h V-'o ° V;i = V; G Vl/
and $;• H ■0;^ G *; A
tf/ierc #; • h V^i; ^ G *o; [V;o]A
and #0; [V-'oJA h V'o! *<*A G *; A
and $; • h (i/>0; ^A) ° (V-u! <*) = {i/r, S) G *; A.

Proof: direct. □

A last useful property is projection. Given a meta substitution, we can extract the underlying
generalized substitution.

Lemma 7.17 (Projection)
IfV::$;-h^;6e *;A
then $ h ip G *.

Proof: by induction on D. □

Liveness

Liveness expresses that every case statement satisfying the coverage condition can be successfully
executed without starving the computation. Only under the assumption that liveness holds can
we prove progress. More precisely, we must show that "case (ijr, S) of Jl" provides a case
(\I> 0 ip' !->■ P) in Q such that there exists a ip" that satisfies ip — %/>' o if/'. The proof of this
property is split into several lemmas, closely following the definition of the coverage condition
in the previous section. For example, there is a liveness property for constant covers, for local
parameter covers, for global parameter covers and for schematic covers, and naturally for single
and multiple coverage.

We begin the presentation with a liveness lemma for constant covers. This lemma expresses
that if there exists a (in general arbitrary) unifier of (Iirx.i?.T « YlTx.B'c,x PS XTX.C (*bc Vx)),

210

CHAPTER 7. REALIZABILITY 211

where \I>C, B'c are the result of raising the type of a constant c declared in E, then the case in Q
generated by c (by ccunify) is applicable, and ev_yes would fire if ti were executed. We construct
the substitution which solves this unification problem in the proof of Lemma 7.22 from the
explicit substitution in the case subject.

Lemma 7.18 (Liveness of constant covers)
// V :: *i; x : UTX. Bx- *2 r- E » u cover
and * = ^>i,x : U.TX.BX^2

andT,(c) = UTc.Bc

and * h raise (Tx, UTC. Bc) = (*c > nrx. B'c)
and T :: $; • h ip; 5 € *, *c; A
and i/> E unify (UTX. Bx « UTX. B'c, x « XTX. c (*c rx))

then there exists a (<3/o > V'o) G w a^ ß V'l
s.f. $ h V'l G *o

onrf $0 I- ^o G *
ond $ h V'o ° ^l = V'l* G ^

Proof: by induction on V, using Lemma 7.14 and by Lemma 7.15. A detailed proof can be
found in Appendix C. D

Similarly, if we have a solution for the unification problem unify (HTX.BX « IiYx.B'p,x «
XFx.p (vtp rx)) generated by a local parameter in T (which we also construct in the proof of
Lemma 7.22), then the corresponding case (generated by p) in Q is applicable, and ev_yes would
fire if 0, were executed.

Lemma 7.19 (Liveness of local parameter covers)
7/P::*i;x:nrx.Bx;*2f-r»w cover
and^ = ^i,x:UTx.Bx,^2

andT(p) = UTp.Bp

and # h raise (Tx, UTp. Bp) = (*p > nrx. B'p)
and T :: $; ■ h V; <* G *, *P; A
and v G um/j, (nrx.#x« nrv^a; « Arx.P (*p rx))
£/zen £/iere exists a ($0 ^ V'o) G a; and a ißi

s.t. $ h ^1 G *o
one? *o I" V'o G *
and $ h I/JQ ° ^1 = ^|* G $

Proof: by induction on £>, using by Lemma 7.14 and by Lemma 7.15. A detailed proof can be
found in Appendix C. D

And finally, if we have a solution for the unification problem unify (Iirx. Bx sa nrx. B'xm
Arx.p (tyy Tx)) this time to be constructed in the proof of Lemma 7.21, the corresponding case
(generated by y) in p is applicable, and ev_yes would fire if Q were executed.

Lemma 7.20 (Liveness of global parameter covers)

211

212 7.3. COVERAGE

IfV :: *i;a; : UTX. Bx;^2\^3 H/)>u cover
and * = ^i,x : UVX.BX,V2

and p(y) — HTy. By

and * h raise (i\, nr„. £„) = (*„ o DT*. 5£)
and J7 :: $ h ip E *, *3, *,,
and ^ e «ni/y (rnv Bx « nrx. ß£, x- « Arx.p (*j, r*))
iÄen there exists a (^>o>tpo) £w and a V>i
s.i. $ h V>i e *o
and *o l~ ^o G *
and $ h ^o ° V;i = V'l* £ ^

Proof: by induction on V, using Lemma 7.14 Lemma 7.15. A detailed proof can be found in
Appendix C. □

Recall that the coverage condition for global parameters was defined by two judgments in the
previous subsection. We have a judgment for global parameter coverage and one for schematic
coverage. Correspondingly, there is a lemma for liveness of global parameter covers which we
have already discussed, and there is one for the liveness of schematic coverage which we discuss
now. Consider a case analysis on x. We must show that for every possible form of x, there is a
case in fi, and for this lemma, we assume that x is bound to an object whose head constructor
is a parameter variable g declared in the parameter context: ij>(x) = XTx.g My..M„. g must
be declared in a block schema which is part of the overall declared context schema. From this
information alone, we can construct a solution to the unification problem in Lemma 7.20 which
proves the claim immediately.

Lemma 7.21 (Liveness of schematic coverage)
If V :: *i; x : UTX. Bx; $2h5»u
and * = <3>i, x : Iir.T. Bx, *2

and T :: $ h iß G \I>
and tjj(x) = XTx.g M\..Mn

and pL £ $
and p(g) = HTg. Bg

and S{L) = SOME Cx. BLOCK C2

then there exists a {^>Q\> ipo) £u and a i/>\
s.t. $ b T/>! G *O

and *o b tpo G *
and $h^o! °^i = ip € *&

Proof: by induction on V, using Lemma 7.11, Lemma 6.7. Lemma 2.7, and Lemma 7.20. A
detailed proof can be found in Appendix C. □

The substitution if) may map x to an object whose head constructor is not necessarily a
global parameter. It could be either a local parameter or a constant since there are only three
possibilities! By a very similar construction as in the previous argument, we construct a solution
to the unification problem from Lemma 7.18 and Lemma 7.19, respectively. The claim follows
immediately.

212

CHAPTER 7. REALIZABILITY 213

Lemma 7.22 (Liveness of single coverage)
IfV :: \& h LO cover
and £■;:$(- ip G #
i/jerc ttere e.m£s a (\&o > V'o) £ w and a ^i

and ^>0\- ifj0 e^
and $\-ipooip1=iJ)E'fy

Proof: by case analysis of V, using Theorem 2.6, Lemma 7.11, Lemma 6.7, Lemma 2.7,
Lemma 7.18, Lemma 7.19, Lemma 7.21. A detailed proof can be found in Appendix C. D

Our approach to complete case analysis allows several splitting steps of different variables;
in the coverage condition, this is expressed by the multicons-rule. In order to show that there is
always one applicable case in Q, we have to consider successive splits over several variables in tp
according to the cover* relation.

Lemma 7.23 (Liveness of multiple coverage)
IfV:: $hw cover*
and $ h V> € *
then there exists a (\I/o > V'o) £ w and a ipi
s.t. $ h ^ £ $o
and *o l~ V'o £ *
and $l-?/)o0^i='!/'G^f

Proof: by induction on V using Lemma 7.22 and Lemma 5.2. A detailed proof can be found
in Appendix C. D

Finally, by factoring and projecting meta-substitutions, we obtain the formal result that
any case statement which satisfies the coverage condition defines one case in Q that keeps the
computation running on the abstract machine. The decomposition of the substitution, which is
guaranteed to exist by the next lemma, is a formalization of the side condition of ev_yes.

Lemma 7.24 (Liveness)
IfV ::$/\-UJ cover*
and £ :: $; • \- ip;5 G *; A
then there exists a (\&o > ipo) G ui, and a tp\, s.t. $; • h tpi; ö G ^o; [i>o]A
and *o; ty>o]A h ^o; idA G *; A
and®;- h {tp0]idA)o {ipyj) = {ip;ö) G *;A

Proof:
direct, by Lemma 7.17, Lemma 7.23, and Lemma 7.16. A detailed proof can be found in

Appendix C. D

The stage is set for the proof that every function in M^ under the two side conditions is a
realizer.

213

214 7.4. SOUNDNESS OF M%

Progress

Liveness is a property attached to case statements. In essence, it expresses, that for any case
subject, the side condition attached to tryes is fulfilled for at least one case in Q. This observation
guarantees that the abstract machine, once started on a match state containing 0 will transition
into a non-match state after finitely many steps (by applying tryes). Therefore the computation
of cases can never get stuck.

Lemma 7.25 (Progress for case)
IfS = $;C> {%!)] 5)~VL
and there exists a ((\I;o > V;o) >-» -P) G 0. and a V;i
s.t. $;.r-^;ÄG*o;WA
and *o; [^oJA h i/)0; jrfA 6 $; A
and $; • h (i/>0; id±) o (ipi;6) = (ijr, S) <E #; A
f/?,en £/?,ere exists an S'

andS =±> S'
and S" is not a match state

Proof: by induction over Q. A detailed proof can be found in Appendix C. □

This result generalizes directly to the progress theorem. In every state (except a final state)
the abstract machine can make one transition step to the next state. Thus, by induction it
follows that in any situation the machine can make progress. In a situation where the current
state contains a case statement, the claim follows from the progress lemma for case, in all others
directly from the form of the rules.

Theorem 7.26 (Progress)
If S is a state, but not a match state
and S ^ $; • > V
and V::\-SeF
then there exist an S' and an S" which is not a match state

and S =► S' =^ S"

Proof: by case analysis of S,using Lemma 7.24 and Lemma 7.25. A detailed proof can be found
in Appendix C. □

Therefore, any computation executed on the abstract machine can never get stuck until it
reaches a final state that we interpret as the result of the computation.

7.4 Soundness of M.\

All proof terms of the fragment of M.\ specified in Section 7.2.1 are total on under the operational
interpretation via a small-step semantics. We conjecture that this claim holds for all functions
in the Il2-fragment of M.\ but we leave the proof of this claim to future work.

When those proof terms (encoded as states) are executed on the abstract machine, the
computation makes progress and will eventually terminate. Technically we can extract the value
of the computation out of the final state. Thus, all proof terms in M.\ witness the provability
of a theorem and are therefore called realizers.

214

CHAPTER 7. REALIZABILITY 215

Theorem 7.27 (Realizability)
lf.fr, -\-PeF
then there exists a V
s.t. $;-hV EF

and$;*\>P =?=> $;*>V

Proof: direct, using Theorem 7.9, Lemma 7.4, and Theorem 7.26. A detailed proof can be
found in Appendix C. D

All functions in M.^ are realizers, and by executing them we construct the witness objects for
the existentials from given instantiations of the universals. Moreover, we can now give a formal
proof of the soundness of M.\ with respect to the semantics we have specified in Definition 5.7.
Any 112-formula which is 'inhabited' by a value V is semantically valid. The proof is an easy
induction over the structure of formulas.

Theorem 7.28 (Soundness of M%)

1. IfV::\-QeG
then \= G.

2. IfV::fr-hVeF
then §\=F.

Proof: (1) direct, (2) by induction on the size of formulas F, using Lemma 6.11, Theorem 7.27,
Lemma 6.22, and Lemma 6.20. A detailed proof can be found in Appendix C. D

7.5 Summary

Thus, we conclude this Section by reiterating the main theoretical results of this thesis. M%
is a sound intuitionistic meta-logic, because all recursive functions are realizers. It elegantly
combines higher-order representation techniques with the formalization of inductive arguments.
Unlike purely logical systems, which are designed to be complete, we cannot hope for M^ to
be complete because of its expressiveness (even though it is restricted to the Il2-fragment). We
have not carried out the argument, but we speculate that M.\ could theoretically be represented
in LF, which exposes it to Gödel's incompleteness theorem [Göd31].

If preferred, M.\ can be seen as type theory whose datatypes take full advantage of LF's
representational power; i.e. dependent types and higher-order representation techniques. In this
it differs significantly from inductive definitions that rely on the positivity condition. Without
coverage and termination side condition, M.\ is a type theory for recursive functions, but with
them, M.\ can be seen as a sound meta-logic for LF.

In addition, this type theory inherits many of the properties associated with hypothetical
judgments such as substitution, contraction, weakening, and exchange. Those properties need
not be explicitly represented in a proof term which makes them in general short, concise, and
amenable for automatic construction which we discuss in the next Chapter 8. We leave an
investigation of how to turn M% into a full-fledged programming language to future research
but discuss the basic ideas in Section 9.1.5.

215

216 7.5. SUMMARY

216

Part III

Implementation

217

Chapter 8

Twelf

8.1 Introduction

Twelf is a meta-logical framework for the specification, implementation, and meta-theory of
deductive systems from the theory of programming languages and logics. For example, Twelf has
been successfully employed to derive various properties such as type preservation and progress of
various operational semantics, the consistency of logics, and the admissibility of new inference
rules. Other results include automatic proofs of the Church-Rosser theorem, cut-elimination
for various logics, soundness and completeness of uniform proof search and resolution. It relies
on the LF type theory and the judgments-as-types methodology for specification [HHP93], a
constraint logic programming interpreter for implementation [Pfe91], and the meta-logic M%
for reasoning about object languages encoded in LF under the regular world assumption. It is
a significant extension and complete reimplementation of the Elf system [Pfe94].

Specification. Twelf employs the representation methodology and underlying type theory of
the LF logical framework discussed in Chapter 2. Expressions are represented as LF objects
using the technique of higher-order abstract syntax and hypothetical judgments whereby variables
of an object language are mapped to variables in the meta-language. This means that common
operations, such as renaming of bound variables or capture-avoiding substitutions are directly
supported by the framework and do not need to be programmed anew for each object language.

For semantic specification LF uses the judgments-as-types representation technique. This
means that a derivation is coded as an object whose type represents the judgment it establishes.
Checking the correctness of a derivation is thereby reduced to type-checking its representation
in the logical framework and therefore in Twelf (which is efficiently decidable).

Algorithms. Generally, specification is followed by implementation of algorithms manipu-
lating expressions or derivations. Twelf supports the implementation of such algorithms by a
constraint logic programming interpretation of LF signatures, a slight variant of the one origi-
nally proposed in [Pfe91] and implemented in Elf [Pfe94]. The operational semantics is based on
goal-directed, backtracking search for an object of a given type. For the purpose of this thesis
we will not discuss this feature here. The interested reader is invited to consult [PS98] for a
detailed discussion.

219

220 8.2. THEOREM PROVER FOR LF

Meta-Theory. Using the regular world assumption Twelf offers an experimental automatic
meta-theorem proving component based on the meta-logic M.\ presented in Chapter 5. It
expects as input a restatement describing a property of LF objects over a fixed signature,
a fixed context schema, and a termination ordering and searches for an inductive proof by
constructing a realizer in M.\. Even though a number of the theorems in the example suites
described below can be proven automatically, we consider the meta-theorem prover to be in a
preliminary state.

Twelf is written in Standard ML and runs under SML of New Jersey and MLWorks on Unix
and Window platforms. The current version is distributed with a complete manual, example
suites, a tutorial in the form of on-line lecture notes [PfeOO], and an Emacs interface. Source
and binary distributions are accessible via the Twelf home page http://www.twelf.org.

While Twelf is implemented in ML it is executed as a stand-alone program rather than
within the ML top-level loop. This is feasible, since meta-programming is carried out in type
theory itself via a logic programming interpretation, rather than in ML as in many other proof
development environments. The most effective way to interact with Twelf is as an inferior
process to Emacs. The Emacs interface, which has been tested under XEmacs, FSF Emacs,
and NT Emacs, provides an editing mode for Twelf source files and commands for incremental
type checking, logic program execution, and theorem proving. Moreover it provides utilities for
jumping to error locations and tagging and maintaining configurations of source files.

In this Chapter we sketch a theorem prover for LF implemented in the Twelf system in
Section 8.2, and we describe the meta-theorem prover in Section 8.3, in particular the three
basic operations Filling, Splitting, Rexursion, the non-standard treatment of lemmas and we
remark on the correctness of the implementation. In Section 8.4 we give a brief overview of
how to use Twelf and its meta-theorem prover, and we demonstrate its power by presenting a
formalization of the Church-Rosser example. In Section 8.5 we report on other experiments we
have conducted with the meta-theorem prover, and we summarize the results of this Chapter in
Section 8.6.

8.2 Theorem Prover for LF

The overall goal of this thesis is to develop a tool to automate the meta-theory of deductive
systems. This tool is designed to automate the reasoning processes as we have used them to
convince ourselves of the correctness of the substitution Lemma 3.6 and the diamond Lemma 3.7
for the simply-typed A-calculus in Section 2.2. It lies in the very nature of this goal that reasoning
about a deductive system is connected to reasoning inside the formal system; in all example
proofs, we have used the rules defined with the deductive system to complete a case in the proof
such as for example 'plain' and 'papp' in the proof of Lemma 3.4. Because the representation
of the formal systems defining parallel reduction and well-typed terms in LF are adequate, i.e.
there is a one-to-one correspondence between derivations in the deductive system and their
representation as objects in the type theory, we can carry out the following development purely
in type theory. We use the proof of the reflexivity Lemma 4.3 as example.

220

CHAPTER 8. TWELF 221

fun refl x = u
| refl (lam (Ax : term T. E' x)) =

let

new x : term T,u:x =4- x
val P xu = refl (E' x)

in

plam (Xx : term T.Xu : x =4> x.P x u)
end

| refl (app E\ E2) =
let

val Pi = refl ^
val P2 = refl £2

in
papp Pi P2

end

This is the proof a theorem about deductive systems, but at three occasions we reason inside

the deductive system. In the first case, we have to search for an LF object M of type x => x,
and such an M clearly exists, because we assumed the existence of u. In the second case where
the argument to refl is 'lam (Xx : term T.E' x)\ we have to apply 'plam' to the result of the

induction hypothesis in order to construct a derivation of type 'lam (Ax : term T. E' x) =>
lam (Ax : term T.E' x)\ And finally, in the third case we have to apply 'papp' to the result of
the two calls to the induction hypotheses Pi and P2.

Therefore, the meta-theorem prover that is designed to reason about deductive systems relies
on the ability to reason within it. In short, we distinguish the LF-theorem prover that searches
for proofs within a deductive system from the meta-theorem prover that searches for proofs about
formal systems. We sketch the design of the LF-theorem prover as it is implemented in the Twelf
system in this section, and postpone the design of the meta-theorem prover until Section 8.3.

8.2.1 Basic Operations

The objective of the LF theorem prover is to search for an LF object of given LF type from a
set of assumptions * and a set of constants declared in the signature S. The context * contains
all information about the currently valid extension of the regular world. In the implementation
we use meta-variables to signify holes in an LF object (see also [Mun97]), and in this section,
we simply write [P] for a meta-variable with the name P, omitting all details.

Example 8.1 (Parameter case) Given

* = T : tp, (x : term T, u : x =U> x)L

the LF theorem prover can construct an object

£): x =$■ x

221

222 8.2. THEOREM PROVER FOR LF

in the following way. First, it detects that no constant in the signature E can instantiate ^P

because none of their types unify with x => x. x are parameters that cannot be unified with
constants. Second, it locates the one declaration in "I' whose type unifies: the parameter u.
Therefore

= u

successfully instantiates [P

Example 8.2 (larn-case) Given the context

* = Ti : tp,T2 : tp, E' : term Tj -» term T2,P : Ux : term T].x =U> x -> (£?' x) (E'x)

where P is the result of applying the induction hypothesis after extending the world, the LF
theorem prover constructs an object

P7]: (lam (\x : term TX.E' x)) =U (lain (Xx : term TX.E' x))

the following way. After examining the entire signature and the context, the LF theorem prover
determines that there is only one possible choice to instantiate P' , namely 'plain'. Since 'plain'

is of functional type, it needs to be applied to another LF object signified by P" : (E' x)
(E'x):

P' = plain (Xx : term T\. Xu : x x. P"

The search continues, this time for | P" \. Note, that the search must take place in an extended

context, because P" may depend on .7; and u.

T\ : tp, T2 : tp, E' : term Tj -> term T2, P : Ux : term Tj. x =U x -> (£?' x) =U (E' x),

x : term T\, u : x => x.

Eventually, LF theorem prover successfully terminates with a valid instantiation P x u for P"
and returns the overall search result:

P' = plam (Xx : term T. Aw : x => x. P x u)

Example 8.3 (app-case) In the third case the LF theorem prover is given the context \P

T\ : tp, T2 : tp, Ex : term (T2 arrow Tx), E2 : term T2

Pi: Ei =U EUP2:E2 =U E2

where Pi and P2 are the results of applying the induction hypothesis and it is asked to construct

an object P_ of type (app E\ E2) =^> (app E\ E2)- There is only one constant in the
signature that does not violate any typing constraints; 'papp' applied to two new meta-variables
is therefore a possible instantiation for P'

P' = papp P[\[P[\ ■ (app Ei Eh) =U (app Ey E2)

222

CHAPTER 8. TWELF 223

Pi and P' where Pi and P!, are two new meta-variables.

Pi
P' r2

E\ ==r- E\

E2 => E2

Next, in the same context \I/, they are instantiated by P\ and P2, respectively, and hence

papp Pi P2 : (app E\ £2) => (app E\ E2) is a solution for P' .

These three examples demonstrate how the LF theorem prover works. Starting with one
meta-variable, the system searches for an instantiation of a variable hereby possibly introducing
new meta-variables. Only if all meta-variables are instantiated, the theorem prover stops and
signals success. Meta-variables of functional type can be lowered by moving the additional
functional parameters into the context, a trick we have used in Example 8.2.

Naturally, the search space for objects of a certain type may not always be finite. The LF
theorem prover therefore employs a limited depth, depth-first, and iterative deepening search
procedure, that works surprisingly well in many of our examples.

8.2.2 Correctness

The implementation of the LF theorem prover is 513 lines of SML code, not taking into account
the code for unification, and constraint handling. Even though Twelf is programmed with a lot
of care, and the central modules are manually verified, the implementation may still contain
bugs.

But fortunately, we do not have to rely on the correctness of the implementations of the
algorithms used in Twelf. Instead of verifying the correctness of the entire system, we can
verify each resulting instance of the theorem prover by type checking! The LF type-checker
implemented in Twelf is relatively small, it contains only 206 lines of code, and it can be easily
verified. It is autonomous in that it does not depend on other parts of Twelf, such as modules
for unification. In fact, the Twelf systems provides an option that forces every object generated
by the LF theorem prover to be type checked.

8.2.3 Limitations

The LF theorem prover has one crucial limitation; it implements a straight-forward bottom-up
search schema for derivations in a deductive systems. This search technique is advantageous for
certain deductive systems, but it is absolutely disastrous for others. In particular systems which
define any kind of transitivity suffer extreme hardship because once started the LF theorem
prover tries to guess the intermediate object which may be entirely unconstrained, and the
run-time of the prover becomes excruciatingly slow.

For certain deductive systems on the other hand, in particular logics, rewrite systems, and
programming systems, specialized proof search and rewrite methods have been developed in
recent years [DMTV99, Häh99]. We can only outline future directions of research to incorporate
these techniques into the LF theorem prover in Section 9.1.4.

223

224 8.3. META-THEOREM PROVER

8.3 Meta-Theorem Prover

The meta-logic M.2 is designed to formalize theorems that express properties about formal
systems such as logics and programming languages and their proofs. Its main purpose is to
encode inductive arguments about higher-order encodings of deductive systems — higher-order
encodings for which typically no standard induction principles exist. Inductive definitions are
at the heart of many theorem provers like Coq, Isabelle, and Lego, and they rely on the closed
world assumption. The Twelf system, however, is based on the regular world assumption,
which permits the formalization of inductive arguments about higher-order encodings. Besides
the standard constant declarations representing inference rules, the; regular world assumption
permits regular extensions of the world as we have discussed in the previous chapters. In the
proof of the reflexivity Lemma 4.3 for example, in particular in the second case, the induction
hypothesis is only applicable in a world extended by x, u.

| refl (lam (Xx : term T. E' x)) =
let

new x : term T, u : x => x
val Pxu = refl (£?' x)

in

plam (A.T : term T. Xu : x ==> x. P x u)
end

The regular world'assumption guarantees that dynamic extensions can only grow in regular,
limited, and well-defined ways. Therefore we can predict their forms and it allows us to reason
about them abstractly

It is this regular world assumption from which the meta-theorem prover in Twelf draws
its power. In other theorem provers one has to introduce auxiliary constructions in order to
make the natural higher-order encoding artificially first-order; but auxiliary construction hamper
efficient proof search since properties about their interactions must be made explicit. Additional
substitution lemmas for de Bruijn encodings, weakening lemmas, and exchange lemmas are only
few of the examples one encounters when working with artificial first-order encodings.

Therefore the main difference of the meta-theorem prover implemented in the Twelf system
and other standard inductive theorem provers is that it provides mechanisms and operations
to dynamically reason about the world. All our examples have very natural encodings in LF,
the proofs are very elegant — as we have shown in Chapter 4 — and therefore, the mota
theorem prover is very efficient when it comes to constructing these kind of proofs automatically.
Hence in these special domains. Twelf's meta theorem prover outperforms any other inductive
theorem prover. In this section, we describe its basic operations in Section 8.3.1, the treatment
of lemmas in Section 8.3.2, and the proof search strategy in Section 8.3.3. Finally we report
on the correctness of the implementation in Section 8.3.4, and we describe its limitations in
Section 8.3.5.

8.3.1 Basic Operations

The proof search algorithm used for the meta-theorem prover in Twelf is composed of three
basic proof search operation: Filling, Splitting, and Recursion. At what point in time to apply

224

CHAPTER 8. TWELF 225

which operation is determined by the proof search strategy which we describe in Section 8.3.3.
The purpose of this subsection is to motivate the three basic operations.

The meta-theorem prover expects as input the formula to be proven, and the termination
order that guides proof search. Once started, it tries to construct a derivation in the proof
calculus of M\ described in Chapter 5. In analogy to the description of the LF theorem prover
in Section 8.2, we use meta variables (this time ranging over .M^-proof terms and not over
LF objects) which we denote by |P |. Note the bold type face of the variable inside the box.
Formally the search procedure used in the meta-theorem prover is called with a formula F and
a context Vl/, and it returns a proof term P or reports failure. We omit the set of meta-level
assumptions A which is part of the typing judgment of M%- Initially, the meta-theorem prover
is called with two more arguments: a termination order and an upper bound for search passed
to the underlying LF theorem prover (see Section 8.2). Naturally, the LF signature, and the
description of how the world can be extended are fixed before the theorem prover is invoked.
For better readability, we write

*

P £F

for proof goals. Recall that we only conduct proof search for proofs of n2-formulas. That means
for the reflexivity lemma, for example, that we would ask the meta-theorem prover for a proof
term P such that

p evr tP ME term T. 3P E
l

E.T

After applying the VL twice, the meta-theorem prover arrives at a goal of the following form
which we can consider the initial state for the theorem proving process.

T:tp,E: term T

P' &3P-.E E.T

where
= AT : tp. KE : term T. P'

We consider these kind of goals initial because the domain of problems for the meta-theorem
prover is restricted to (possibly empty) conjunctions of II2-formulas. In particular VL and AL can
be applied as many times as necessary until the formula to be proven contains only existential
quantifiers. Thus, in general the proof state of the theorem prover can be described by a set of
proof goals to be shown. The formulas F\,..., Fn are Si-formulas.

tfi

eFx

$r

ef»

Using the reflexivity lemma as example, we motivate now the three basic operations of the meta-
theorem prover of Twelf: splitting, filling, and recursion. The meta-theorem prover is given the
following initial state.

T : tp, E : term T

P' G 3P : E =U E.T

225

226 8.3. META-THEOREM PROVER

Splitting

Recall, that the original proof proceeds by case analysis. In this setting case analysis simply
means to pick an assumption from the context, and to examine all possible cases. The context
of this proof goal contains two LF assumptions for which we can analyze cases: T or E. In this
situation, the meta-theorem will pick E — how it is determined that E is the right hypothesis
to be split is discussed in the Section 8.3.3.

The splitting operation relies crucially on the regular world assumption. By definition £"s
head can only be a constant declared in the signature, or a global parameter — there are no
other options. This is exactly what the regular world assumption expresses. Therefore the
meta-theorem prover traverses the entire signature, and by unification it determines that either
E = lam (Xx : term T.E' x), or E = app E\ E2 as possible shapes, and finally it traverses the
context schema, and concludes that E = x is a third option. The splitting operation implements
one iteration of the coverage algorithm described in Section 7.3. Thus splitting yields a new
proof state with three proof goals.

T : tp, (x : tevmT,u:x x

P'/ <E 3P:x x.T

7\ : tp, T2 : tp, E' : term Tx -> term T2

e 3P : (lam (Xx : term T\. E' x)) =U- (lam {Xx : term Tx. E' x)). T

Ti : tp, T2 : tp, Ex : term (T2 arrow TX),E2: term T2

P^l G 3P : (app Ex 3>) =U (app E, £,). T appEi E2).T

In addition P' is instantiated with a case construct, whose list of cases Q contains three entries.

, respectively. The case bodies are P'/ , P'/ , and P'/

P^ = case {T/T, E/E; refl/refl) of

(T :tp,{x: term T,u:x =k- x)L > T/T,x/E i-> P"

(Ti : tp, T2 : tp, E' : term Ti -> term T2

> (Ti arrow T2)/T, (lam E')/E H- P"

(Ti : tp, T2 : tp, Ei : term (T2 arrow T}),E2: term T2

>T1/T,(appEiE2)/E ^ P"

The current version of the meta-theorem prover computes proof terms only implicitly. In future
revisions, the proof terms of M% will be explicitly generated, and an efficient and independent
proof checker will be provided that can verify them.

In summary, the splitting operation is an operation that selects a proof goal from the proof
state, it selects a variable declaration (but not a parameter variable) from the proof goal, analyzes
its cases, and adds the newly generated proof goals into the proof state.

226

CHAPTER 8. TWELF 227

Filling

The filling operation attempts to close a proof goal by constructing witness objects for the
existentially quantified variables. In our example there is only one existential quantifier, but in
the general case there might be several. In order to construct witness objects, the meta-theorem
prover invokes the underlying LF theorem prover, passes it the list of assumptions, and an upper
search bound. The LF theorem prover either returns and reports success or fails. In the case
that there are several existentially quantified declarations, the LF theorem prover attempts to
find several object simultaneously. The reason is that, that this way the theorem prover can take
advantage of the dependencies that constrain the search spaces. Back to the example. Given
the proof goal,

T : tp, (x : term T,u: x =» x)L

Pi' <E 3P:x x.T

the meta-theorem prover invokes the LF theorem prover to construct an instantiation for P"
from assumptions T, x, and u. The LF theorem prover returns success and as solution it reports
u. Already expected by the meta-theorem prover, this solution is embedded in a proof term for

3P:x i x.T

Pi' =(«,<»

closing this proof goal. Two goals remain unsolved, but filling alone cannot solve them. In
summary, the filling operation employs the underlying LF theorem prover to construct witness
objects for the existential objects. If successful, the proof goal is completed and removed from
the proof state.

Recursion

The recursion operation eagerly calculates all possible appeals to the induction hypotheses and
makes their results available in a proof goal. Consider for example the third goal in the proof
state of the meta-theorem prover in our example. Recall, that the original universal variable E
is instantiated by 'app E\ E2 after the splitting operation.

Tj : tp, T2 : tp, E1 : term (T2 arrow T{],E2: term T:

Pg] £ 3P : (app Ex E2) =^» (app EY E2). T

The meta-theorem prover is invoked with the argument which hypothesis to do induction on:
for this theorem it is E. Therefore, in order to guarantee termination, recursive calls can only
be applied to subterms of E. Implicitly by splitting, the meta-theorem prover has learned about
the form E. In particular it can derive that E\ and E2 are subterms of E. As a matter of fact,
these are the only two (non-equal) subterms of E whose type matches the one of the induction
hypothesis. Thus, there are only two ways of safely applying the induction hypothesis. The
first way is to apply it to (T2 arrow Ti) and to E\, and the other way is to apply it to T2 and
E2 ■ It is the recursion operation that calculate all possible outcomes of appeals to the induction
hypothesis. In this case the result is:

227

228 8.3. META-THEOREM PROVER

3Pi :£?! =U Ei.T

3P2:E2 =U E2.T

Because proof search is restricted to the I^-fragment of M2 , the result of applying an
induction hypothesis lies also in the n2-fragment. In this particular example on the other hand,
the situation is even simpler: both result formulas are existential and lie therefore in the Si-
fragment. We postpone the discussion of the more general case until Section 8.3.2.

Next, the recursion operation makes the witness objects of the recursive calls available as
assumptions. Logically speaking, it applies the 3L rule of M2 to extract the witness objects Pi
and P2 in this example.

T] : tp, T2 : tp, Ex : term (T2 arrow T,), E2 : term T2,P\:Ei = U EUP2:E2 = UE2

n E 3P : (app Ex E2) =U (app El E2).T

Because of the regular world assumption applying recursion to the second last proof goal is
more difficult. In the lam-case, for example, it is not enough to simply calculate all induction
hypotheses, but the theorem prover must also consider extensions of the world in order not to
miss any.

T] : tp,T2 : tp,E" : term T\ -> term T2

PÜ] E 31? : (lam (Xx : term T,. E' x)) E 31? : (lam (Xx : term T,. E' x)) =±> (lam (Xx : term T\. E' x)). T

In this situation the original E has been instantiated to (lam (A.;; : term Tj. £7' x)) by the
spitting operation. Without extending the current world, there are no possibilities to apply the
induction hypothesis at all. On the other hand, it is possible to apply the induction hypothesis to
the body of E', assuming that the world has been extended by one new constructor x : term T\.
Therefore, the recursion operation takes the context schema into account and considers all
possible extensions of the world in order to determine all inductive calls. For this particular
proof goal, there is only one way to extend the world

(x : term Ti,u:x => x)L

and only one possible appeal to the induction hypothesis:

n(x: term Tuu:x =U x)L.3P:Ei =U £,.T

The recursion operation interprets this formula as a new hypothesis and inserts it into the proof
goal:

Ti : tp, T2 : tp, E' : term Tx -» term T2,P:Ux: term Tx .x =h- x -> (E' x) =U (E' x)

P" r2 £ 3D : (lam (Xx : term TX.E' x)) =^ (lam (Xx : term TX.E' x)).T

In summary, the recursion operation calculates all possible applications of the induction
hypothesis, and it adds the new assumptions into the context of the proof goal. Clearly, the
main drawback of this approach is that too many applicable induction hypothesis will slow
down the underlying LF theorem prover because of a search space explosion. But this is not
a problem for this example. Applying two more filling operations to the remaining two proof
goals completes the proof of the reflcxivity lemma.

228

CHAPTER 8. TWELF 229

8.3.2 Lemmas

In the previous subsection we have described the three basic operations providing the foundation
of the meta-theorem prover. But we have postponed one question: How does the prover apply
lemmas? Note that there is one fundamental difference between applying an induction hypoth-
esis and applying a lemma. So far we have only considered the special case where an appeal
to the induction hypothesis instantiates all universally quantified variables according to the in-
duction ordering. The argument to a lemma application on the other is entirely unconstrained.
Therefore, the model used for calculating all induction hypothesis in a forward directed manner
is not applicable in this setting. There are simply too many possibilities, possibly even infinitely
many.

As a matter of fact, a very similar problem occurs already in the general case of determining
possible appeals to the induction hypothesis. The previously used technique of extracting the
LF-level content from a meta-level formula does not work in this setting if only some but not
all of the universally quantified variables are constrained by the termination ordering. In these
situations, the result of applying the induction hypothesis is typically a formula that is still in
the n2-fragment. We call these formulas residual lemmas and for the purpose of this subsection,
they are treated the same way as lemmas are.

The center of the treatment of lemmas stands the idea to exploit the LF theorem prover to
execute the search for lemma applications and their appropriate arguments. But how can this
be established? Lemmas are meta-level constructs, and the most basic design principle of M.^
is to separate the meta-level from the LF level. By design, the LF theorem prover should not
be able to access meta-level lemmas.

Fortunately, there is a solution to this dilemma. Using a technique very similar to skolem-
ization, we can encode meta-level lemmas as Skolem constants provided that these constants are
only applied to arguments valid in the regular world. We write V for n to make this distinction
notationally self-evident. Consider for example the substitution Lemma 4.5 that is required in
the proof of the diamond Lemma 4.6. The substitution lemma is made accessible on the LF
level by a Skolem constant #subst.

#subst :
VTi : tp. VT2 : tp. V£q : term T2 ->■ term T1.VE[: term T2 -> term Tx.

ME2 : term T2. V£2 : term T2.

V£>! : (Tlij : term T2.y =^ y -»■ Ex y =U E[y). VD2 : E2 =U E'2.
TP J? • T?1 TP1

hi\ £J2 => Jb-^ £j2

Skolem constants are only used for proof search by the underlying LF theorem prover and for
no other operation. They are different from regular constants and they are neither considered
for splitting nor for recursion. One remark about the current implementation: The LF theorem
prover is incomplete because it cannot extend the world during proof search.

How are Skolem constants used? In the pbeta/pbeta-case of the diamond lemma, for ex-
ample, when automatically generated, the filling operation constructs two calls to the lemmas
implicitly. (We omit all implicit arguments to #subst). It is a straightforward algorithm to ex-
tract the lemma applications from this proof term and replace it by explicit lemma applications,
as shown in Figure 4.4.

229

230 8.3. META-THEOREM PROVER

| dia (pbeta (Xx : term T. Aw, : x =4> x. D[X U) Dl
2) =

(pbeta (Xx : term T. Xu : x => x. D\ x u) £>£)
let

new x : term T,u:x ==£■ x
val (Pi xu,P2Xu) = dia (£)' x u) (D\ x u)

in
let

val(Q1,Q2)=dia£>^D5
in

(#/m&.siP, Qu#subst.P2Q2)
end

end

As final example for the treatment of lemmas, consider the formula describing the diamond
Lemma 4.6. It is used in the proof of the strip Lemma 4.7.

VT : tp. VE : term T. ME1 : term T. VEr : term T.

\/Dl :E =U- E'.\/Dr :E=UEr.

3E' : term T. 3R1 : P' =U E'. 3Er : Er =U E'. T

Once the meta-theorem prover has successfully completed the proof of this lemma, it emits
new Skolem constants to make it accessible for the subsequent theorem. There are three of these
constants, each Skolem constant corresponds to one existential quantifiers.

#dia,i : VT : tp. VP : term T. VE1 : term T. VEr : term T.

V£>' : E =U E'.VDr : E =4 ET.
term T

#dia2 : VT : tp. ME : term T. VE1 : term T. V£7 : term T.

\/D':E =U E'.VDr:E =U- Er.

(#rfiai £>' T>r) =U £'

#efta3 : VT : tp. V£ : term T. ME1 : term T. V£r : term T.

VD' : E =U- £'.VDr :E=UEr.

Er =k (#diai D1 Dr)

In summary, the meta-theorem prover can efficiently apply lemmas and residual lemmas by
encoding them as Skolem constants in LF. In the implementation the LF theorem prover treats
them as LF constants applicable only to closed terms valid in the regularly formed world.

8.3.3 Strategy

Filling, splitting, and recursion are the three basic operations underlying the implementation of
the meta-theorem prover. Each of the operations has a different output behavior. Filling for
example can either succeed (and solves a proof goal) or fail, indicating that further splitting steps

230

CHAPTER 8. TWELF 231

^,

Q.E.D.
Proof State no

yesy A I \ A A

Filling
yes ;

noy yes

Unprovable Splitting Recursion 3

nnl

Figure 8.1: Proof strategy

are necessary. Splitting itself is almost always applicable as long as there there are splittable
(assumption) variables in the context. On the downside it can be very tricky to predict which
assumptions to split. Thus, any implementation of search using these three operations must be
fair selecting splitting operations, otherwise the search may run into an infinite descent.

The only operation that can be deterministically applied is the recursion operation. It inserts
the results of applying all induction hypotheses eagerly into the current proof goal, possibly
extending the list of residual lemmas. The operation is entirely deterministic and finite, and
therefore worth applying to every new proof goal inserted into the proof state by splitting.

These observations lead to the obvious and very straightforward design of a strategy for the
theorem prover that is depicted in Figure 8.1. It is this strategy which is implemented in the
Twelf system.

Given a proof state consisting of many proof goals, the strategy picks arbitrarily the current
proof goal. It then attempts to complete this goal by applying the filling step. There are two
possible outcomes. First, the goal has been successfully proven, then it can be safely removed
from the proof state, or second the filling step failed and then a splitting operation must be
invoked. In general, there are many ways splitting can be applied to a proof state, in the proof
of the reflexivity lemma above for example, initially, there are two possible splits on T and
E, and in the subsequent lam-case, there are three, and in the app case, there are even four.
Splitting typically generates several new proof goals, and each of them is pumped through the
recursion operation to compute the result of all inductive calls. Naturally, new assumptions
added by recursion may be subject to further splitting steps at later stages of the proof. The
new proof goals are added to the proof state.

In the case that neither a filling operation nor a splitting operation can be successfully applied
to a proof goal, the meta-theorem prover halts and reports that a proof can not be found. In
the case that the filling operation is successful, the meta-theorem simply picks another proof
goal from the proof state.

The most difficult decision for Twelf is to select the assumption from the context of a proof
goal about which variable to split next. The current implementation employs a very simple and
in a few cases unsatisfactory heuristic: for example, it will never split a variable that appears
as an index to a type of any other variable, and among the remaining choices it picks a variable
that has been part of a splitting operation the least number of times. There are a few other
bits of information which influence its choice, such as for example, the position of the variable
in the induction order, or the number of cases generated. Concretely, we attach a counter to
every splittable variable in the context \I/ of a proof state which is increased and inherited by the

231

232 8.3. META-THEOREM PROVER.

children of a the variable affected by a splitting operation. To avoid infinite chains of splitting
operations the meta theorem prover is parameterized by an upper bound for the number of
splits of one variable. The size of the search space of the meta-theorem prover depends crucially
on this bound. As a side effect, it implies fairness of the splitting operation application, since
every applicable operations will eventually be applied. Consequently only finitely many splitting
operations are applicable.

8.3.4 Correctness

The correctness argument for the implementation of the meta-theorem prover follows the cor-
rectness argument of the LF theorem prover. The meta-theorem prover relies on complicated
operations that are very difficult to verify, such as splitting, filling, and recursion. Therefore,
we should not trust the implementation of the meta-theorem prover. Instead, we should trust
an independent proof checker, that verifies the correctness of the proofs generated by the meta-
theorem prover.

Proof-checking for .M^j" is decidable since every proof term constructor uniquely determines
the most recently applied rule. Despite this observation an implementation an independent
proof checker for M\ is significantly more complicated than a type checker for LF because in
addition it also has to verify the termination Condition (5.1), the coverage Condition (5.2), and
the strictness Condition (5.3). The decision procedure for the syntactic criterion for the coverage
condition is particularly difficult to verify because it relies on the correctness of the unification
algorithm that we have defined in Section 7.3.

The current implementation does not provide an independent proof checker for M.\, it is still
work in progress. A proof-checker for M^ will satisfy the same conditions as the schema-checker
for LF was designed to verify [Roh96], namely type preservation, termination, and progress. The
main difference between both approaches is that the M. J proof-checker verifies properties about
functions in M.\, whereas the schema-checker verifies properties about relations represented in
LF under a logic programming interpretation. For the purpose of verification, the M% proof-
checker can take full advantage of the type system of M%, all necessary algorithms are described
in this thesis. The schema checker on the other hand does not enjoy the luxury of a formal meta-
logic, it is merely designed to guarantee termination and coverage properties of logic programs
and proofs.

The idea of reducing the problem of correctness away from the tool itself towards the instances
the tool generates is not new. Pollack [Pol97] for example distinguishes between the correctness
of the method and the correctness of the proofs.

Clearly, the method behind the implementation of the meta-theorem prover in Twclf is in
principal correct because it constructs M J proof-terms, and M% is sound by Theorem 7.28. To
judge if the implementation itself is correct, we propose a small and independent proof-checker
that checks each M. J proof term — its design is well-understood, but it is not yet implemented
the current version of Twelf. However, a custom made proof checker is not necessary, if we can
devise an algorithm that translates Twelf meta-proofs over higher-order encodings, into proofs
readable and verifiable by traditional theorem provers. By doing so, the verification problem
moves away from M% into a logic which supports standard induction principles, which relies on
the closed world assumption, and for which there are numerous independent implementations.
Naturally, after a translation, the proofs explode in size because every appeal to a substitution
lemma, weakening lemma, or exchange lemma has to be made explicit.

232

CHAPTER 8. TWELF 233

One such translation technique uses de Bruijn indices [dB 72]: variable occurrences are trans-
lated into natural numbers. Note, that the correctness of this technique relies on the correctness
of the transformation function itself. There are many (more or less) trusted proof checkers that
can verify de Bruijn encodings and standard induction principles, such as for example HOL
[GM93], LCF/ML [Pau87], Coq [CT95], Lego [Pol94], Isabelle [Pau94], or PVS [OSRSC99].

8.3.5 Limitations

The current implementation of the meta-theorem prover in Twelf is an experimental prototype.
Therefore it has several limitations. Some of the limitations are easily generalizable others open
entire new research areas. The implementation has one limitation that is due to specialization.
In its current form, the meta-theorem prover is restricted to handle only one variable block p in
the context * of any proof goal. In a situation where more than one variable block is required,
the theorem prover fails due to incompleteness. This restriction will be removed in the next
release.

A more severe limitation is due to the choice of the splitting variable. Currently, the assump-
tion to be split is chosen by a heuristic, and in some cases it commits to the right choice, but in
general it does not. The heuristic implemented in the current prototype is sufficient for many
examples and surprisingly effective despite its simplicity, but the general case is not well under-
stood. In particular, failure situations in which no splitting operation makes progress should be
be recognized early in the proof but are not in the current implementation. The objective must
be to not further explore unpromising branches and provide good feedback to the user of why
the proof cannot be found.

Therefore, all possible splitting operators that are applicable to a particular proof goal should
be ordered in such a way that the "right" splitting operation is among those that rank very highly.
Splitting operations, that do not advance the proof should rank very low in this ordering. Only
with a better understanding of what constitutes a good splitting operation, the meta-theorem
prover stands a chance to formulate helpful error message that may indicate that a lemma is
missing or that the current formula to be proven must be further generalized.

The meta-theorem prover works only for the n2-fragment of M\. Recall that M\ provides
very few connectives for on the level of theorems. In many situations, however, Twelf users
would like to formulate and prove theorems that lie outside the n2-fragment, but the meta-
logic M\ does not support these kind of theorems. In other situations, one may desire to
use other connectives than quantification and conjunction, such as, for example, disjunction,
implication, or negation (see also the remark on typing continuations in Section 7.1.4). Luckily,
for special instances, disjunctions and negations can be encoded directly in LF, and therefore
this incompleteness of M\ is not as grave as it looks at first sight.

Yet another connective that is also not provided by M\ but desired by many Twelf users is
the ability to express unique existence. The reflexivity lemma from above, for example, can be
expressed as

VT : tp. ME : term T. 3lD : E =±> ET

where the 31 quantifier expresses, that there exists exactly one object of type E =^> E. One
remedy to enhance the expressiveness of the meta-logic is to explicitly add equality; if D\ and

D2 are two objects of type E => E then Di equals D2. We postpone any further speculation
on how equality can be added to the meta-logic until Section 9.1.3.

233

234 8.4. A CASE STUDY

Finally, another limitation of the implementation of the meta-theorem prover is that it does
not explicitly construct any proof terms yet. Internally, they are there because all the three
basic operations such as splitting, recursion, and filling, are directly associated with the recipe
of how to construct them; but in the current version Twelf does not export them. Therefore,
.M^-proofs are currently not verifiable by any other independent and trusted proof checker.
This limitation will disappear with the next version.

8.4 A Case Study

In this section we present as case study the entire development of the Church-Rosser example
from Chapter 2, and automated versions of the meta-proofs form Chapter 4 in Twelf. We
proceed with the presentation in two steps. First, we give a brief overview about Twelf and
comment on the concrete syntax implemented in the Twelf system in Section 8.4.1, and then we
present the development of the Church-Rosser theorem in Section 8.4.2.

8.4.1 A Brief Overview of Twelf

Twelf implements the logical framework LF; signatures represent all type level and object level
constant declarations and are written in regular ASCII files and can be loaded into Twelf. Twelf
employs a powerful type reconstruction algorithm that allows the user to be brief and concise.
For example, the signatures for the Church-Rosser theorem from Figure 2.2 and Figure 3.1 can
be directly loaded into Twelf. It is this elegant correspondence, that makes Twelf an ideal rapid
prototyping tool for the design of logics and programming languages. However, this thesis does
not account for all details and features that the Twelf system offers. Instead we invite the reader
to consult the Twelf manual [PS98] and Pfenning's book [PfeOO] for a complete presentation of
of the Twelf system and many more examples.

We begin the discussion with defining lexical conventions before we present the concrete
syntax for encoding LF signatures in Twelf. Finally we introduce the syntax of how to express
theorems, and proofs in Twelf.

Lexical Conventions

The lexical analysis of Twelf has purposely been kept simple, with few reserved characters and
identifiers. As a result one may need to use more whitespace to separate identifiers than in other
languages. For example, A->B or A+B are single identifiers, while A -> B and A + B both consist
of 3 identifiers. During parsing, identifiers are resolved as reserved identifiers, constants, bound
variables, or free variables, following the usual rules of static scoping in A-calculi. Figure 8.2
lists all reserved characters in Twelf.

All printing characters that are not reserved can be included in identifiers, which are sepa-
rated by whitespace or reserved characters. In particular, A->B is an identifier, whereas A -> B
stands for the type of functions from A to B. An uppercase identifier is one which begins with
an underscore _ or a letter in the range A through Z. A lowercase identifier begins with any
other character except a reserved one. Numbers also count as lowercase identifiers and are not
interpreted specially. Free variables in a declaration must be uppercase, bound variables and
constants may be either uppercase or lowercase identifiers.

234

CHAPTER 8. TWELF 235

' . '
i 1

'()'
'[]'

'{}'

T
i 0/ 5 i 01 011

/O 7 /O /O

7.{ }'/.'
"/ofcei/u/ord'

7..'

colon, constant declaration or ascription
period, terminates declarations
parentheses, for grouping terms
brackets, for A-abstraction
braces, for quantification (dependent function types)
whitespace separates identifiers (space, newline, tab, carriage return)
introduces comments or special keyword declarations
comment terminated by the end of the line, may contain any characters
delimited comment, nested %{ and }°/0 must match
various declarations
end of input stream
doublequote, disallowed other printing characters identifier constituents

Figure 8.2: Reserved identifiers

'->' function type
'<-' reverse function type
I 5 hole, to be filled by term reconstruction
t_' definition
'type' the kind type

Figure 8.3: Reserved identifiers with predefined meaning

Figure 8.3 depicts the five reserved identifiers with a predefined meaning which cannot be
changed. These can be constituents of other identifiers which are not interpreted specially.
Constants have static scope, which means that they can be shadowed by subsequent declarations.
Uppercase identifiers in declarations represent schematic variables.

Syntax for LF

In LF, deductive systems are represented by signatures consisting of constant declarations.
Twelf implements declarations in a straightforward way and generalizes signatures by also al-
lowing definitions which are semantically transparent [PS99a]. Twelf currently does not have
module-level constructs in the spirit of [HP98] and therefore, for example, signatures cannot be
named. Instead, multiple signatures can be manipulated in the programming environment using
configurations.

The LF type theory is stratified into three levels: objects, types, and kinds. Twelf does not
syntactically distinguish these levels and simply uses one syntactic category of term. Similarly,
object-level constants and type-level constants as well as variables share one name space of
identifiers.

The grammar depicted in Figure 8.4 formalizes the logical framework LF from Section 2.4.
It defines the non-terminals sig, decl, term and uses the terminal id which stands for identifiers.
There are various special declarations '/„keyword such as °/0inf ix or "/.theorem with special argu-
ments, such as ixdecl, thdecl, pdecl, or callpats which we discuss in detail below. Note, that this

235

236 8.4. A CASE STUDY

sig :: = Empty signature
decl sig Constant declaration

decl :: = id : term,. a : K or c : A
id : term = term,. d:A = M
id = term,. d = M
_ : term, = term,. anonymous definition, for type-checking
- = term. anonymous definition, for type-checking
'/.infix ixdecl. operator declaration
'/.name id id. name preference declaration
'/.theorem thdec.l. theorem declaration
'/.prove pdecl. prove declaration
'/.establish pdecl. prove declaration, don't make available as lemma
'/.assert callpats. assert theorems (only in unsafe mode)

Figure 8.4: Concrete syntax of Twelf

term, :: = type type
1 id variable x or constant a. c, or d
| term, -> term, A->B
| term <- term, A <- B, same as B -)• A
1 {id term} term. Ux : A. K or II.r : A. B
| [id terml term. Xx : A. B or Xx : A. M

term term, A M or M N
term, : term, explicit type ascription

\ hole, to be filled by term, reconstruction
1 {id} term, same as {id:_} term
| [id] term, same as [id:J term.

Figure 8.5: Syntax for terms

is only a brief description of Twelf, there are many other special declarations that we do not
describe here; we restrict this presentation only to the ones that are relevant to the development,
of the Church-Rosser theorem that we describe in Section 8.4.2.

The syntax for terms is depicted in Figure 8.5. The constructs {x:U} V and [x:U] V bind
the identifier x in V, which may shadow other constants or bound variables. As usual in type
theory, U -> V is treated as an abbreviation for {x:U} V where x does not appear in V. However,
there is a subtlety in that the latter allows an implicit argument to depend on x while the former
does not. We shed some light on implicit arguments later in this section.

In the order of precedence, we disambiguate the syntax as follows: Juxtaposition (applica-
tion) is left associative and has highest precedence. -> is right and <- left associative with equal
precedence. : is left associative. {} and [] are weak prefix operators.

New type level and object level constants can be introduced with id : term,. Any identifier x
may be bound by the innermost enclosing binder for x of the form {x: A} or [x: A]. Any identifier

236

CHAPTER 8. TWELF 237

assoc :: = none not associative
left left associative
right right associative

prec :: = nat 0 < prec < 10000

ixdecl :: = assoc prec id

Figure 8.6: User-defined infix operators

which is not explicitly bound may be a declared or defined constant. Any uppercase identifier,
that is, identifier starting with _ (underscore) or an upper case letter, may be a free variable.
Free variables are interpreted universally and their type is inferred from their occurrences. Any
other undeclared identifier is flagged as an error.

Twelf supports notational definitions, currently employing a restriction to allow a simple and
efficient internal treatment. Semantically, definitions are completely transparent, that is, both
for type checking and the operational semantics definitions may be expanded. Definitions id :
term = term. and id = term . (which is equivalent to id : _ = term.) can only be made on
the level of objects, not at the level of type families because the interaction of such definitions
with logic programming search has not been fully investigated.

In order to avoid always expanding definitions, Twelf currently only permits strict definitions
[PS99a]. A definition of a constant c is strict if all arguments to c (implicit or explicit) have
at least one strict occurrence in the right-hand side of the definition, and the right-hand side
contains at least one constant. In practice, most notational definitions are strict.

The user may declare constants to be infix operators. Operator precedence properties are
associated with constants, which must therefore already have been declared with a type or kind
and a possible definition. It is illegal to shadow an infix operator with a bound variable. We
use nat for the terminal natural numbers in Figure 8.6. During parsing, ambiguous successive
operators of identical precedence such as a <- b -> c are flagged as errors. Note that it is not
possible to declare an operator with equal or higher precedence than juxtaposition or equal or
lower precedence than -> and <-.

During printing, Twelf frequently has to assign names to anonymous variables. In order
to improve readability, the user can declare a name preference '/.name id id. for anonymous
variables based on their type. Thus name preferences are declared for type family constants.
Note that name preferences are not used to disambiguate the types of identifiers during parsing.

Following our same conventions, a name preference declaration has the form '/.name a id,
that is, the first identifier must be a type family already declared and the second is the name
preference for variables of type a. The second identifier must be uppercase, that is, start with a
letter from A through Z or an underscore _. Anonymous variables will then be named idl, id2,
etc.

Representations of deductions in LF typically contain a lot of redundant information. In
order to make LF practical, Twelf gives the user the opportunity to omit redundant information
in declarations and reconstructs it from context. Unlike for functional languages, this requires
recovering objects as well as types, so we refer to this phase as term reconstruction.

There are criteria which guarantee that the term reconstruction problem is decidable, but

237

238 8.4. A CASE STUDY

unfortunately these criteria are either very complicated or still force much redundant information
to be supplied. Therefore, the Twelf implementation employs a reconstruction algorithm which
always terminates and gives one of three answers:

1. yes, and here is the most general reconstruction;

2. no, and here is the problem; or

3. maybe.

The last characterizes the situations where there is insufficient information to guarantee a
most general solution to the term reconstruction problem. Because of the decidable nature of
type-checking in LF, the user can always annotate the term further until it falls into one of the
definitive categories. For a detailed discussion on many examples related to type reconstruction
consult [PS98].

Syntax for M%

There are four special declarations that define the interaction with the meta-theorem prover.
The first declaration is '/.theorem, that declares an M^-formula that is to be proven using either
'/„prove, '/.establish, or '/.assert, '/.prove and '/.establish take as argument the maximal filling-
bound, that restricts the size of the search space of the LF theorem prover, an induction ordering,
and a call pattern that relates the induction variables to the actual arguments of the theorem,
'/.assert on the other hand only expects a call pattern. It allows to assert the correctness of a
theorem even if Twelf cannot prove it. Naturally, in a valid proof development no '/.assert is
admissible. Hence, in order to take advantage of this feature, the user has to toggle Twelf into
unsafe mode.

The syntax for theorems is defined in Figure 8.7. Abstractly, arbitrary quantifier alternations
are allowed, but Twelf rejects any formula that lies outside the E^-fragmcnt of M J. The f orallG
quantifier binds a context schema that defines a regular extension to the current world described
by a context schema for which the theorem is to be proven that is denoted by the non-terminal
symbol regext. The some decs pi rfecs-blocks describe the individual context blocks in terms of
a SOME-block and a BLOCK-block. forall and forall* are two different notations for the
same universal quantifier. The difference between the two is negligible in the current version.
If Twelf would generate proof terms, the forall*-quantifier defines which universal quantified
variables are implicit and need not to be displayed in the proof term. The existential quantifier
and T have the expected meaning.

Example 8.4 (Diamond lemma in Twelf) The diamond Lemma 4.6 can be expressed in
Twelf as formula

'/.theorem dia : forallG (some {A:tp} pi {x: term A} {idx : x => x})
forall* {A:tp}{M:term A}{M':term AHM":term A}
forall {Dl: M => M'} {D2: M => M"}
exists {N:term A}{E1: M' => N}{E2 : M" => N}
true.

238

CHAPTER 8. TWELF 239

dec :: = {id: term} x : A

decs :: = dec singleton block
| dec decs block of declarations

regext :: = some decs pi decs context block
some decs pi decs \ regext context schema

formula :: = f orallG regext formula Quantification over regular contexts
f orall* decs formula implicit universal
f orall decs formula universal
exists decs formula existential
true truth

thdecl :: = id : formula Assigning a name to a formula

Figure 8.7: Syntax for A^-formulas in Twelf

The argument to the f orallG quantifier defines the regular extension of the world, the three
bound arguments M, MJ, M" are implicit; once a proof term is generated (see Figure 4.4) it only
expects two arguments Dl and D2 and not five. The forall quantifier binds Dl and D2 and
exists binds the three returning arguments N, El, and E2.

More examples of theorems are described below in Section 8.4.2. In summary, Twelf only
accepts formulas of the Il2-fragment, i.e. of the form

forallG regext forall* decs forall decs exists decs true.

After its declaration a theorem is subject to automated proof search. It is initiated by a %prove
declaration that expects as arguments the maximal filling depth, and an induction order. The
induction order associates argument positions of the theorem via call patterns. A call pattern
consists of the name of the theorem applied to as many arguments as there are °/0f orall and
'/»exists quantified declarations (it should be read as a relation that associates input positions
with output positions). Each argument can be either named or anonymous. Admissible in-
duction orders include lexicographic and simultaneous extensions of the subterm ordering as
explained in Section 7.2. Their syntax in Twelf is depicted in Figure 8.8.

The case of mutually recursive predicates is particularly complex and requires mutually
dependent call patterns with mutually related arguments. Their syntax is given in Figure 8.9.

Example 8.5 (Call pattern for diamond lemma) There are several call patterns for the
diamond lemma: The most complete is dia Dl D2 N El E2 but in general one typically
specifies only those arguments in the call pattern that are needed in an induction ordering
dia Dl D2 .

All variables used to specify an induction order for "/.prove declaration must be upper case,
and they must occur in the call patterns. In addition, no variable may be repeated. Furthermore,

239

240 8.4. A CASE STUDY

ids :: = empty list of arguments
id ids argument name

arg :: = id single argument
| (ids) mutual arguments

orders :: = empty list of orders
order orders component order

order :: = arg subterm order

{orders} lexicographic order

[orders] simultaneous order

Figure 8.8: Syntax for induction orders in Twelf

args :: = no argument
id args named argument
_ args anonymous argument

callpat :: = id args a, x\ ... xn

callpat s :: = (callpat) single call pattern
(callpat) callpats mutual call patterns

Figure 8.9: Syntax for call-patterns in Twelf

pdecl ::= nat order callpats bound, induction order, theorems

Figure 8.10: Syntax for proof declarations in Twelf

240

CHAPTER 8. TWELF 241

all arguments participating in the termination order must occur in the call patterns in input
positions: The argument vector pdecl to a "/.prove declaration is depicted in Figure 8.10.

In order to accept a declaration of the form "/.prove, or '/.establish, Twelf activates the
meta-theorem prover and attempts to construct a proof. If the meta-theorem prover reports
failure, Twelf halts with an error message that a proof could not be found. On the other hand if
it finds a proof it applies skolemization and makes the lemma accessible for subsequent proofs.
However, adding new Skolem constants may lead to an explosion of the respective search spaces
for subsequent theorem proving task. The user can prevent these additions by using "/.establish
instead of "/.prove.

The meta-theorem prover implementation has only prototype status. Its proof strategy is
simple yet powerful, but in some situations Twelf is not able to find a proof because of search
space explosions, due to continuous splits of wrong assumptions or the complexity of elementary
reasoning in LF. Twelf offers a way that the user can continue the development by simply
asserting that a theorem holds. Obviously, this is a rather dangerous operation, and it requires
the user to put Twelf into unsafe mode from the Twelf main menu. Different from "/.prove,
"/.assert followed by a call pattern asserts a theorem without proving it. This unsafe option of
Twelf should only be used with extreme care.

8.4.2 Developing the Church-Rosser Theorem in Twelf

We begin this case study with encoding the LF declarations from Figure 2.2. In essence we
replay almost exactly the development from Chapter 2. Here are the declaration of the types
tp and terms term.

tp : type . "/.name tp T.
arrow : tp -> tp -> tp. '/„infix right 10 arrow.

term : tp -> type. "/.name term E.
lam : (term Tl -> term T2) -> term (Tl arrow T2).
app : term (Tl arrow T2) -> term Tl -> term T2.

We follow the development in Section 2.5 and introduce the ordinary reduction relation for
simply-typed terms. '—>' is a type family representing the single step reduction from a term of
type A to another term of the same type. We declare it as infix operator.

—> : term T -> term T -> type, "/.infix none 10 —>.
"/.name —> R.

rbeta : (app (lam El) E2) —> El E2.

rlam : ({x:term Tl} E x —> E' x)
->' (lam E) —> (lam E').

rappl : El —> El'
-> (app El E2) —> (app El' E2).

rapp2 : E2 —> E2'
-> (app El E2) —> (app El E2').

241

242 8.4. A CASE STUDY

Next, the single step reduction relation is generalized to a multi step reduction relation
'—>*' by defining its reflexive and transitive closure. '—>*' is used as an infix operator. The
two inference rules are represented by rid and rstep.

—>* : term T -> term T -> type, '/.infix none 10 —>*.
'/.name —>* R*.

rid : E —>* E.

rstep : E —> E'
-> E> —>* E"
-> E — >* E" .

And finally, the ordinary reduction relation can be generalized to a conversion relation by
building the reflexive, transitive, and symmetric closure of the ordinary multi-step reduction
relation.

<-> : term T -> term T -> type, '/.infix none 10 <->.

'/.name <-> C.

rrefl : E <-> E.

rred : E —>* E'

-> E <-> E> .

rsymm : E <-> E'

-> E> <-> E.

rtrans: E <-> E'

-> E' <-> E''

-> E <-> E J >

We formalize the single-step parallel reduction relation in Twelf, which we generalize to a
multi-step parallel reduction, and parallel conversion, as already depicted in Figure 3.1. Note,
that declarations in Twelf syntax are in very direct correspondence to the LF declarations given
in Chapter 3. It is this elegance, that gives Twelf the expressive power and the meta-theorem
prover its deductive power.

=> : term T -> term T -> type, '/.infix none 10 =>.

'/.name => R.

pbeta : ({x:term T} x => x -> El x => El' x)

-> E2 => E2'

-> (app (lam El) E2) => El' E2'.

papp : El => El'

-> E2 => E2'

242

CHAPTER 8. TWELF 243

-> (app El E2) => (app El' E2').

plam : ({x:term T} x => x -> E x => E' x)
-> lam E => lam E'.

As for ordinary reduction, the single step parallel reduction can be generalized to a multi-
step parallel reduction, just as discussed in Section 3.2.2. The resulting type family is an infix
operator '=>*', and its semantics is expressed by two constants in Twelf in the following way.

=>* : term T -> term T -> type, "/.infix none 10 =>*.
7,name =>* R*.

pid : E =>* E.

pstep : E => E'
-> E' =>* E"
-> E =>* E''

And again, following a very similar strategy as in the ordinary case, the concept of parallel
conversion is the result of closing the parallel multi-step reduction under reflexivity, symmetry,
and transitivity.

<=> : term T -> term T -> type, '/„infix none 10 <=>.
'/.name <=> C.

pred : E =>* E'
-> E <=> E'.

pexp : E =>* E'
-> E' <=> E.

ptrans : E <=> E'
-> E' <=> E''
-> E <=> E'' .

This concludes the encoding of the simply-typed A-calculus and its ordinary and parallel reduc-
tion semantics in Twelf. Next we tackle the proof of the Church-Rosser theorem itself; and again,
the elegance of Twelf allows us to follow directly the development as described in Section 3.2.1
very closely. In order to emphasize this point, we show all theorems from Chapter 3 and their
formalizations in Twelf. We also comment on the timing results of each of the proofs.

Lemma 3.1 (Transitivity of —>) IfV\ :: e —> e' and T>2 :: e' —-> e" then e e n

This lemma can be directly formalized in Twelf. The proof goes by simultaneous induction over
Dl and D2, and the search space of the underlying LF theorem prover is limited by the bound
4. All experiments with the Twelf meta-theorem prover on which we report in this thesis were
conducted on a Pentium II 400, with 192MB of RAM. This proof of the transitivity lemma was
found in 0.01 sec.

243

244 8.4. A CASE STUDY

'/„theorem trans* : forall* {T: tpME: term THE' : term THE" : term T}
forall {Dl: E ~>* E'}{D2: E' —>* E"}
exists {R: E -->* E''}
true.

"/„prove 4 [Dl D2] (trans* Dl D2 _) .

Following the development of Section 3.2.1, we will now employ Twelf to prove all three parts
of Lemma 3.2.

Lemma 3.2 (Admissible rules)

1. IfVr.e —> e' then \x : T. e —> Xx : r. e'

2. IfT> :: e\ —> e[then e\ e2 —> e\ e-2

3. If V :: €2 —> e-2 then e\ e2 —> e\ e'2

Only because of the inherent similarity of the three properties we have summarized them to
one lemma: in fact, they are not mutually dependent on each other. Each of the cases can
be formalized and automatically proven in Twelf. The first case rests on the regular world
assumption. Twelf derives the admissibility of reductions under the A-binder in 0.25 sec and the
other two parts in 0.17 sec and 0.024 sec, respectively.

"/„theorem lm* : forallG (some {T: tp} pi {x: term T})
forall* {Tl: tp}{T2: tp}

{E
forall {D
exists {R
true,

"/„prove 4 D (Im* D _) .

term Tl -> term T2}{E': term Tl -> term T2>
{x: term Tl} (E x) —>* (E' x)}
(lam E) —>* (lam E')}

"/„theorem apll* : forall* {Tl: tp}{T2: tp}
{El: term (Tl arrow T2)}{E1': term (Tl arrow T2)}
{E2: term Tl}

forall {D: El -->* El'}
exists {R: (app El E2) —>* (app El' E2)}
true.

"/„prove 3 D (apll* D _) .

"/„theorem aprl* : forall* {Tl: tp}{T2: tp}
{El: term (Tl arrow T2)}
{E2': term T1}{E2: term Tl}

forall {D: E2 —>* E2'}
exists {R: (app El E2) —>* (app El E2')}
true,

•/„prove 3 D (aprl* D _) .

244

CHAPTER 8. TWELF 245

The informal development in Section 3.2.3 continues with the presentation of the reflexivity
lemma 4.3. In this formal development on the other hand, we postpone its proof until the point
where we prove the equivalence of ordinary and parallel reductions. Due to an incompleteness of
Twelf, Lemma 3.11 can only be proven simultaneously with Lemma 4.3 even though Lemma 4.3
itself could be proven on its own. Therefore we continue the formal development with the
transitivity proof for parallel deduction whose construction takes Twelf merely 0.008 sec.

Lemma 3.5 (Transitivity of =>) If V\ :: e =^> e' and T>2 :: e' =^ e" are closed then

s".

"/.theorem trans : forallG (some {T: tp} pi {x: term TMidx : x => x>)
forall* {T: tp}{E: term THE' : term T}{E" : term T}
forall {Dl: E =>* E'}{D2: E' =>* E"}
exists {R: E =>* E''}
true.

'/.prove 4 [Dl D2] (trans Dl D2 _).

Following the informal development, the substitution lemma is next:

Lemma 3.6 (Substitution lemma) Consider the situation where a list of the following as-
sumptions is present

X\ :: term T\,U\ :: X\ =» xi,... ,xn :: term rn.un :: xr

If
v

y =>- y
T>i

i , ei =*> e\

and T>2 :: e2 ==> e'2 then exists a reduction e\\e2Jy\ =$■ e'Je^/y].

The formalization of this substitution lemma in Twelf makes the power and elegance of higher-
order representation techniques explicit. The assumption Dl stands for an arbitrary LF function
that expect y :term T and v:y => y as arguments. Thus the formulation of a substitution and
an automated proof lie well outside the scope of any other first-order theorem prover. Twelf can
prove the substitution lemma in 0.025 sec.

"/.theorem subst : forallG (some {T: tp} pi {x: term THidx : x => x})
forall* {Tl: tp}{T2: tp}

{El: term Tl -> term T2}{E1': term Tl -> term T2}
{E2: term Tl }{E2': term Tl}

forall {Dl: {x: term Tl} x => x -> El x => El' x}
{D2: E2 => E2'}

exists {R: El E2 => El' E2'}
true,

"/.prove 6 Dl (subst Dl) .

245

246 8.4. A CASE STUDY

The diamond lemma from Section 3.2.3 can also be directly formalized in Twelf.

Lemma 3.7 (Diamond lemma) Let $ be the list of given assumptions. If T>' :: e => el

and Vr :: e ==> er then there exists a common reduct e', such that 1Zl :: el => e! and

TZr :: er =U e\

e'

Its proof is quite involved, as we have shown in Section 3.2.3, since we have to distinguish many
cases; nevertheless, Twelf constructs the proof in 8.625 sec.

"/.theorem dia : forallG (some {T: tp} pi {x: term THidx : x => x})
forall* {T: tp}{E: term T>{E1: term T>{Er: term T}
forall {Dl: E => El>{Dr: E => Er}
exists {E': term T}{R1: El => E'HRr : Er => E'}
true.

'/.prove 3 [Dl Dr] (dia Dl Dr).

In order to prove the Church-Rosser theorem for parallel reduction, we generalized the two
single-step reduction arrows in the formulation of the diamond lemma in two steps to multi-step
reduction arrows. First we proved the strip lemma, and second the confluence lemma.

Lemma 3.8 (Strip lemma) Let <X> be the dynamic extension of the world. If V1 :: e =$■ e'
and Vr :: e ==> er then there exists a common reduct e', such that 1Z\ :: ef ==> e' and

TZ2 :: er =U e'.

c'

The strip lemma is easily formalized in Twelf, but it takes surprising 335.266 sec to prove it. This
is a real surprise, considering how simple its proof actually is. Recall from Section 3.2.3, that it
follows by a simple induction on the multi-step derivation and compare it to the complexity of the
proof of the diamond lemma. We suspect that the slow-down is caused by the transitivity rule
in connection with the number of lemmas introduced so far. In particular, the conclusion of the
substitution lemma falls outside the pattern fragment causing the underlying LF theorem prover
to struggle with constraints; in addition the intermediate term whose existence is postulated by
the transitivity rule does not contribute to the solution of those constraints at all.

246

CHAPTER 8. TWELF 247

"/.theorem strip : forallG (some {T: tp} pi {x: term T}{idx : x => x})

forall* {T: tp}{E: term T}{E1: term T}{Er: term T}

forall {Dl: E => El}{Dr: E =>* Er}

exists {E': term T>{R1: El =>* E'}{Rr: Er => E'}
true.

"/.prove 4 [Dr] (strip _ Dr) .

By generalizing the remaining single-step reductions of the strip lemma, to multi-step reductions,
one obtains the confluence lemma.

Lemma 3.9 (Confluence lemma) Let $ be the dynamic extension of the world. If V1 ::

e =*> e and Vr :: e =>- er then there exists a common reduct e', such that 1Z\ :: el ==> e'
and IZ2 :: er =>- e'.

e

*/ *

e' er

■ *

e'

Because of the same effects that slowed down the proof of the strip lemma, the proof of the
confluence lemma is significantly slower than the proof of the substitution or the diamond
lemma. It takes Twelf 40.989 sec to prove it.

"/.theorem conf : forallG (some {T: tp} pi {x: term T}{idx : x => x})
forall* {T: tp}{E: term T}{E1: term T}{Er: term T}
forall {Dl: E =>* El}{Dr: E =>* Er}
exists {E': term T}{R1: El =>* E'HRr: Er =>* E'}
true.

"/.prove 4 Dl (conf Dl).

Following the development from Section 3.2.3, it is now possible to proof the Church-Rosser
theorem for parallel reduction.

Theorem 3.10 (Church-Rosser) Let $ be the dynamic extension of the world. IfV :: el <==>

er then there exists a common reduct e', such that 1Z\ :: el ==$■ e' and 1Z<i ■'■ er ==^ e'.

\<'

The proof goes by induction on D, and it takes Twelf 3.283 sec to construct it.

"/.theorem cr-par : forallG (some {T: tp} pi {x: term T}{idx : x => x})
forall* {T: tp}{El: term T}{Er: term T}
forall {D: El <=> Er}

exists {E': term T}{R1: El =>* E'}{Rr: Er =>* E'}
true,

"/.prove 3 D (cr-par D _ _ _) .

247

248 8.4. A CASE STUDY

This concludes the meta-theoretic development of the proof of the Church-Rosser theorem for
parallel reduction. The reader should have noticed, that the formal development is extremely
close to the informal development. Every informal proof can be formalized an automatically
deduced. But more importantly, no additional lemmas arose and needed to be proven! Typically,
a development like this in a first-order based system with standard induction principles requires
a lot of special infrastructure to encode parametric and hypothetical constructions such as
explicit encodings of variables and substitutions. In addition, it requires a lot of extra meta-
theoretic reasoning about their properties. This observation clearly justifies the use of higher-
order representation techniques in order to support an elegant development of the meta-theory.

We continue with the exposition from Section 3.2.3 and derive the Church-Rosser for ordi-
nary reduction in Twelf. As above, we accurately follow the structure of the development in

Section 3.2.3. In particular we begin with the equivalence proof of the single-step correspondence

between parallel and ordinary reduction.

Lemma 3.11 (Single-step correspondence)

1. If V:: el =U er then el -^ er.

2. IfV::e' -A er then e1 =U- er.

Recall from the informal proof, that the second half of this theorem depends on the reflexivity
Lemma 3.4 whose proof we have postponed so far. Twelf can prove the reflexivity lemma on its
own, but because of an incompleteness in the implementation it cannot prove the second half!
This artifact is due to the different treatment of induction hypothesis and lemmas. Induction
hypothesis are applied by the recursion operation which may extend the regular world <L>. As
discussed in Section 8.3.2, lemmas on the other hand can only be applied in form of Skolem
constants during the filling operation, and filling cannot extend the world. This incompleteness
will be removed in the next released version of the Twelf system.

Lemma 3.4 (Reflexivity of =4>) Consider the situation where a list, of the following as-

sumptions is present

X\ :: term,T\,u\ :: x,\ =*• X\,....xn :: termrn,un :: xn ==> xn

Then for any luell-tijped term e, there exists a derivation of e => e.

The first case of the single-step correspondence is proven by Twelf in 0.094 sec.

'/.theorem singlel: forallG (some {T: tp} pi {x: term THeqx: x => x})
forall* {T: tp}{El: term T}{Er: term T>
forall {D: El => Er}
exists {R: El —>* Er}
true.

"/.prove 3 D (singlel D _) .

And the second case, proven simultaneously with the reflexivity lemma takes only 0.045 sec.

248

CHAPTER 8. TWELF 249

"/.theorem single2: forallG (some {T: tp} pi {x: term T}{eqx: x => x})

: • forall* {T: tp}{El: term T}{Er: term T>
forall {D: El ~> Er}
exists {R: El => Er} true,

"/.theorem refl : forallG (some {T: tp} pi {x: term T}{eq: x => x})
forall* {T
forall {E
exists {R

tp}
term T}
E => E} true.

"/.prove 3 (E D) (refl E _) (single2 D _) .

This result guarantees that there is a correspondence between single parallel reduction steps,
and possibly several ordinary reduction steps. Clearly we can generalize it to a correspondence
result about multi-step reductions.

Lemma 3.12 (Multi-step correspondence) V :: el —-> er iff"R :: el =^> er

Twelf proves the sufficient direction of this Lemma in 0.021 sec, and the necessary direction in
1.228 sec.

"/.theorem multil: forall* {T
forall {D
exists {R

"/.prove 3 D (multil D _) .
"/.theorem multi2: forall* {T

forall {D
exists {R

"/.prove 4 D (multi2 D _).

tpHEl: term T}{Er: term T}
El —>* Er}
El =>* Er} true.

tpHEl: term T}{Er: term T}
El =>* Er}
El —>* Er} true.

The three remaining lemmas analyze the correspondence between parallel conversion and
ordinary conversion. Recall that the concept of ordinary conversion is closed under symmetry,
differently from parallel conversion. But as we have already shown informally in Section 3.2.3,
symmetry is an admissible rule of inference for parallel conversion.

Lemma 3.13 (Symmetry) IfV :: el <=> er then K :: er <=> el

The proof goes by induction on D, and it takes Twelf 0.006 sec to derive this result.

"/.theorem symm: forall* {T: tpHEl: term T}{Er: term T}
forall {D: El <=> Er}
exists {R: Er <=> El} true,

"/.prove 2 D (symm D _) .

Since symmetry is admissible, there is a correspondence between ordinary conversion and
parallel conversion.

Lemma 3.14 (Conversion correspondence)

1. IfVr.e1 <—> er then el <=> er

249

250 8.4. A CASE STUDY

2. IfV::el 4=^ er then el <—> er

Twelf proves the first direction in 0.310 sec, and the second direction in 0.021 sec.

'/„theorem convl: forall* {T: tp}{El: term T}{Er: term T}
forall {D: El <=> Er}
exists {R: El <-> Er} true,

'/.prove 4 D (convl D _).

'/„theorem conv2: forall* {T: tp}{El: term T}{Er: term T}
forall -CD: El <-> Er}
exists {R: El <=> Er} true,

'/.prove 3 D (conv2 D _) .

Thus, as partial result Twelf has shown that the Church-Rosser theorem for parallel reduc-
tion holds, and that parallel reduction models ordinary reduction and vice versa. Thus, the
Church-Rosser theorem for ordinary relation follows directly from applying these two proper-
ties. Two well-typed terms that are convertible via ordinary reduction, are also convertible via
parallel reduction. Therefore, by the Church-Rosser theorem, there exists a common redact,
and two reduction sequences, reducing each of the terms to the same common reduct. Using the
previoiisly proven correspondence theorem, for each of those two parallel reductions there are
corresponding ordinary reductions to the same common reduct, and the Church-Rosser theorem
is proven.

Theorem 3.15 (Church-Rosser for ordinary reduction) If el <—> er then there exists a

common reduct e', s.t. el —> e' and er —> e'.

In order to construct this proof, Twelf delegates the construction of the argument to the under-
lying LF theorem prover, that attempts to fill the existential quantifier by one appeal the filling
operation. Unfortunately, the search space is too big, because many auxiliary lemmas have been
proven. In addition, because lemmas are applied during filling, the LF theorem prover has to
traverse a search space of at least depth 6 or 7. This search space is huge.

To help Twelf to find this result more quickly, we prove first an intermediate result, namely
that ordinary conversion guarantees the existence of two parallel multi-step reductions to the
common reduct. The LF theorem prover can prove this fact in 2.657 sec while traversing a
search space up to depth 3. Using this intermediate resalt, the search space for the actual
Church-Rosser theorem for ordinary reduction has also reduced to depth 3, and Twelf is able to
find the proof quickly in 0.822 sec. Therefore, sometimes we need additional lemmas, if only for
performance reasons.

'/.theorem cr-ord': forall* {T: tpMEl: term T}{Er: term T}
forall {D: El <-> Er}
exists {E': term T}{R1: El =>* E'MRr: Er =>* E5} true,

'/.prove 3 [] (cr-ord' ____).
'/.theorem cr-ord: forall* {T: tpMEl: term T}{Er: term T}

forall {D: El <-> Er}
exists {E': term T}{R1: El —>* E'HRr: Er — >* E'} true,

'/.prove 3 [] (cr-ord ____).

250

CHAPTER 8. TWELF 251

This result concludes the presentation of the case study. In summary, Twelf's expressive
power allows in this experiment a almost direct formulation of lemmas and theorems needed to
proof the Church-Rosser theorem. In particular, all proofs have been generated automatically,
from the information presented in this section. In the current version of Twelf, proof terms are
not explicitly generated and exported to the user level yet, but if they were, they resemble very
much the proofs presented in Section 3.2.3 and in [Pfe93].

The implementation of the Twelf system provides (undocumented) functionality, that allows
the user to step through the proof, thus verifying that it works properly. Throughout the entire
development of the Church-Rosser example we deviated only in two places from the informal
development. First, the single correspondence lemma and the reflexivity lemma had to be made
mutually dependent in order to allow for regular extensions of the world when applying a lemma,
and second the LF theorem prover is not efficient enough to put all pieces together for the proof
of the Church-Rosser theorem. The first restriction will disappear with future releases of Twelf,
and the second requires additional research on how to search for objects in LF more efficiently.

8.5 Experimental results

The formal development of the Church-Rosser theorem for the simply typed A-calculus is only
one of many examples, Twelf has been put to work on. Other examples come from the area of
programming languages and logics, and in this section we attempt to sketch other experiments
we have conducted in Twelf and that we have summarized in Figure 8.11. All timings in this
figure are taken on a Pentium 11/400 Mhz, 192 MB RAM.

The first two entries in this table describe experiments which involve cut-elimination. Twelf
can fully automatically prove cut-elimination for full first-order intuitionistic logic in 6 minutes
and 35 seconds. The proof it constructs is very similar to the proof described in [Pfe95]. The
main difference is that Twelf has to consider significantly more cases, because it can apply
splitting only in a hierarchical manner.

The cut-elimination result [Gen35] is a very important and fundamental result in logic and
the area of automated theorem proving. By inspection of the inference rules of a cut-free
sequent calculus for either intuitionistic or classical logic for example follows that falsehood
is not derivable in this system, therefore warranting the soundness of the calculus and of the
logic. The cut-elimination result is very important for the area of automated deduction since it
guarantees the subformula property for the cut-free fragment of any sequent calculus.

For intuitionistic and classical logic, the cut rule is an admissible rule of inference rule. This
is the basic insight for the cut-elimination theorem and it is not easy to prove. The sequent
calculus for intuitionistic logic, for example, contains 18 inference rules; since the cut-rule has
two premisses this means that all in all, 324 cases are to be considered in the worst case.

In [Pfe95] the representation of the sequent calculus for classical logic is equally elegant to
the one for intuitionistic logic. Nevertheless, the strategy employed in Twelf is not sophisticated
enough to prove cut-elimination for this logic. Wrong choices of splitting operations mislead the
prover, and a proof cannot be found in tolerable time.

Another experiment that we have conducted in Twelf is the development of a functional
programming called Mini-ML [PfeOO]. For a language that contains a simple inductive datatype
(the natural numbers), anonymous functions, applications, let binding and fixed points, Twelf
can prove automatically properties such as: the evaluation of an expression yields a value, or

251

252 8.5. EXPERIMENTAL RESULTS

Experiment Theorem Time
First-order intuitionistic logic
(Sequent calculus)

Admissibility of cut-rule
Cut-elimination

6 min 35 sec
0.28 sec

First-order classical logic
(Sequent calculus)

Admissibility of cut-rule
Cut-elimination

not yet
0.68 sec

Mini-ML Value soundness
Type preservation
Evaluation/Reduction
Uniqueness of typing

0.13 sec
0.42 sec
0.66 sec
0.25 sec

Compilation Soundness
Completeness
Proof equivalence

not yet
1.13 sec
0.46 sec

Logic programming Soundness (uniform derivations)
Canonical forms (uniform derivations)
Completeness (uniform derivations)
Soundness (resolution)
Completeness (resolution)

0.31 sec
0.34 sec
0.28 sec
1.05 sec
0.52 sec

Intuitionistic logic
(Hilbert calculus)

Deduction theorem
Embedding into natural deduction calculus

0.11 sec
0.33 sec

Intuitionistic logic
(implicational fragment)

Natural deduction —> Sequent calculus
Sequent calculus —> Natural deduction

0.11 sec
0.12 sec

Cartesian closed categories Embedding into simply typed A-calculus
Distributivity lemma

3.39 sec
no yet

Kolmogorov embedding Classical logic —> Intuitionistic logic
Intuitionistic logic -» Classical logic

9.55 sec
not yet

Figure 8.11: Experimental results (in CPU seconds)

types are preserved during evaluation, or the natural meaning of an expression coincides with
the one ascribed by a reduction semantics, or typing is unique.

Each of these properties can be verified in less than a second, which makes Twelf an efficient
rapid prototyping tool.

Mini-ML's natural semantics is defined by relating the expression to be evaluated and the
result of the evaluation. But there are other semantics; we have considered for example; another
semantics that is defined in terms of execution traces of a compiled expression on an abstract
CPM machine [FSDF93]. As a matter of fact, we have used Twelf to verify one direction of the
equivalence proofs between the natural and the trace-based semantics. The soundness direction
of the proof states, that once the abstract machine has computed a result, it coincides with the
natural semantics. The proof of the soundness property requires complete induction, a technique
that Twelf does not support in the current version. The completeness direction on the other hand
states that each value computed by the abstract machine (upon input of a compiled expression)
corresponds to the natural meaning of the expression. This property is very tedious to derive
by hand, and Twelf does it in 1.13 sec.

In the same experiment we have used to Twelf to show that every soundness proof for

252

CHAPTER 8. TWELF 253

concrete expressions can be transformed into a completeness proof and vice versa. This is a
meta-meta result about a relational encoding of the soundness and the completeness proofs as
relations in LF.

The third experiment lies in the area of logic programming in the fragment of hereditary
Harrop formulas. We have used Twelf to show that the search for uniform derivations and
resolution are equivalent.

And finally, there are several small experiments. We could for example show that the Hilbert
calculus for intuitionistic logic can be embedded into the natural deduction calculus, and so can
the sequent calculus. The reverse also holds, at least for embedding the natural deduction
calculus into the sequent calculus. Twelf's underlying LF theorem prover is not efficient enough
to prove that any natural deduction derivation can be embedded into the Hilbert calculus.

We have used Twelf to show that Cartesian Closed Categories can be embedded into the
simply-typed A-calculus; objects are interpreted as terms, and morphisms as functions. The
distributivity law of (a pair of two morphisms composed with another morphism) could not
be proven in Twelf, because the underlying LF theorem prover is not efficient enough, but
preliminary experiments with other theorem provers such as SPASS [Wei97] have shown that
this is really a hard problem.

The LF theorem prover is also the problem in the proof of the Kolmogorov embedding. Twelf
easily proves that classical logic can be embedded into intuitionistic logic via the double negation
transformation, but for many cases of the reverse direction, the search space is intractable, and
Twelf is unable to find the proof.

8.6 Summary

The Twelf system is a meta-logical framework that is designed to represent deductive systems,
and to automate reasoning about them. Its design is two layered. The logical framework LF
serves as representation language for deductive systems, and the meta-logic M% serves as a
specification language about their properties.

In this chapter we have presented the Twelf system with special emphasis on its meta-theorem
prover component. The meta-theorem prover uses a sophisticated proof search algorithm to
construct proof terms in M^. One novel concept that distinguishes Twelf's meta-theorem prover
from others is the ability to reason by induction over higher-order encodings using the regular
world assumption. In Twelf inductive definitions are open-ended, they can be dynamically
extended, as long as they follow certain a priori specified formation rules, which we have dubbed
context Schemas. Most other inductive theorem provers however are based on the closed world
assumption and employ standard induction principles for reasoning by induction, which disallow
higher-order encodings in general since they typically violate the positivity condition associated
with standard inductive definitions.

Because of higher-order representation techniques, proofs about formal systems enjoy brief
and concise formalizations in M? , and Twelf's special purpose meta-theorem prover takes full
advantage of their form during search. As case study, we have demonstrated in this chapter how
to use Twelf to prove all lemmas in connection to the Church-Rosser theorem from Chapter 2 and
Chapter 3. In the special domain of higher-order encodings, Twelf is an ideal rapid prototyping
tool for the design of deductive systems and the study of their properties.

253

254 8.6. SUMMARY

254

Chapter 9

Conclusion

The development of formal systems, such as logics, programming languages and type systems is
a task so complex that it benefits greatly from tools that support their design, experimentation,
and their verification. To be usable, these tools must allow a formal encoding of the system
that is as close as possible to its natural form — only then users are likely to overcome their
reservations towards formalization. In addition, the language provided by the tool to express
logics, programming languages, and type systems must be as simple and intuitive as possible;
otherwise the tool remains accessible to specialists only.

The logical framework LF is an elegant meta-language for the representation of formal sys-
tems. It supports higher-order representation techniques, which allow for elegant and natural
encodings of inference rules including side conditions, such as for example, freshness conditions
for variables and parameters. A user who uses a tool based on LF can employ the context of
the logical framework to encode contexts of some object languages given that they share the
same properties. By its very definition LF contexts are subject to weakening, contraction, and
exchange — the same properties assumptions lists of many logic calculi and typing contexts of
many programming languages enjoy.

Thus, LF is a powerful framework to represent formal systems such as logics and program-
ming languages adequately. On the other hand, LF is a type theory, and not a logic per se.
It is not designed as a meta-language to represent proofs of correctness, safety, soundness, or
completeness conditions, or any other properties a formal system may satisfy. Many of those
proofs are inductive; for example, the proof of the diamond lemma requires induction over the
reduction derivations and the type preservation proof of a functional programming languages
proceeds by induction on the evaluation derivation.

The problem is that for higher-order encodings of formal systems in a logical framework
typically standard induction principles do not exist. The closed world assumption that underlies
standard induction principles stipulates a positivity condition on inductive definitions — the
type defined must only occur in positive positions of its constructor types — and in general,
higher-order encodings violate exactly this condition. In fact, the closed world assumption is too
restrictive for inductive definition of higher-encodings because inductive arguments are allowed
to traverse A-binders and thus, inductive definitions are open-ended.

In this sense, higher-order representation techniques and inductive reasoning are incompat-
ible. Proof assistant systems such as Isabelle, Coq, and PVS, are based on the closed world
assumption and therefore they allow only higher-order encodings, that are compatible with
the the positivity condition. However, most of the interesting higher-order encodings we are

255

256 9.1. FUTURE WORK

concerned with, do not satisfy the positivity condition.
In this thesis on the other hand we present an alternative solution: Instead of massaging

our representations in such a way that they satisfy the positivity condition, we allow them to
be higher-order in the most general sense. One of the contributions of this thesis is, that even
though they are not inductive in the standard sense under the closed world assumption, they
can be seen as inductive definitions under the regular world assumption. Under the regular
world assumption, inductive definitions are open ended, they are permitted to be extended in a
regular way when traversing A-binders.

In our design, regularly formed world extensions possess the same properties as LF contexts,
in particular, contraction, weakening, and exchange. Since it is not at all clear which form an
induction principle under the regular world assumption should have, this thesis proposes an
alternative. We have designed the meta-logic M.\ of recursive functions that are defined by
cases, and which range over LF objects. In this meta-logic, inductive proofs over higher-order
encodings are realized by a total functions.

The main characteristics of our design is that the meta-logic and the logical framework
LF are conceptually defined on two different levels. The meta-logic M,^ provides a notion of a
recursive function to formalize inductive arguments, whereas LF provides a notion of parametric
functions, that is used exclusively for the purpose of representation. We have shown that the
design of M^ is sound. Thus, .Mj" is a meta-logical framework based on realizability.

In this thesis we have also developed automated deduction procedures; one that conducts
proof search for LF objects of a given LF type. The other searches for recursive functions, which
formalize proofs, in the meta-logic M^ • Both procedures are implemented in the Twelf system
which is publicly available from the Twelf homepage at http: //www. twelf. org. One is called
LF theorem prover, and the other meta-theorem prover. The meta-theorem prover uses the LF
theorem during proof search.

Because of the immediacy and the elegance of higher-order encodings of formal systems and
because of the direct formalization of meta-theoretic arguments, Twelf's meta-theorem prover
outperforms any other theorem prover in this special domain. Twelf has been successfully
employed to derive various properties of logics and type systems, such as the consistency of logics,
the admissibility of new inference rules, and equivalence of different logic calculi. Other results
include automatic proofs of the Church-Rosser theorem, cut-elimination, and type preservation
and progress of various operational semantics.

9.1 Future Work

The future research that will follow this thesis is manifold. The overall goal of this research is to
devise tools that support the design, the experimentation and the verification of formal systems,
such as logics, programming languages, type systems; but the research program does not stop
there. Instead, as a next step, we would like to scale this research to engineer real usable tools for
security and network protocols designer, for authentication protocol designers, for programming
language designers, for system engineers, and possibly even for software engineers. We foresee
several possible developments along these lines as described in this section.

First we give an overview over possible application domains for this research in Section 9.1.1.
But how good are higher-order encodings for these applications? Are the standard properties
associated with LF contexts enough to guarantee adequate and elegant encodings of the formal

256

CHAPTER 9. CONCLUSION 257

systems in question? It is very likely, that different applications pose different requirements
on the underlying logical framework which we discuss in Section 9.1.2. Another line of future
research emerges from the question of how to extend the meta-logic M\ to facilitate the for-
mulation and automatic reasoning about other applications. We discuss possible extensions of
the meta-logic in Section 9.1.3. In order for Twelf to be a design and experimentation tool, the
prototype implementation of the meta-theorem prover must mature. Possible improvements to
the implementation are described in Section 9.1.4. Another direction of future work results from
interpreting the recursive functions of M\ as programs of a real programming language which
is to be developed. An account of possible research directions is given in Section 9.1.5.

9.1.1 Applications of M.^

Twelf owes its tremendous performance in all our experiments partly to design of the meta-logic
M\, partly to the representational power of the logical framework LF, but also partly to the
cleanliness of the formal systems in question. However, when designing real world programming
languages and safe real world systems, there might not be an elegant and direct encoding in the
logical framework. Twelf, for example, can show type preservation of the execution of purely
functional programs, but it is still an open question, if and how references and exceptions can
be added to the encoding in a direct way. Therefore in future work we have to understand what
requirements real world systems pose on meta-languages such as LF and we propose to achieve
this is by conducting case studies in the area of programming language design, protocol design,
and software engineering.

Safe programming languages. In recent years, several techniques have been developed to
increase the users confidence in the safety of executable code. The idea of proof carrying code
for example [Nec98] suggests to modify compilers to emit not only compiled code but also
corresponding safety proofs that a code consumer can use to check a priori safety properties.
Typed assembly language is a special instance of this design. Safety proofs are encoded by
type information in TAL [MWCG99] following the idea that well-typed programs are safe to be
executed. Similarly, more mainstream, Java bytecode [LY96] is subject to verification by a byte
code verifier that implements a particular safety policy.

All three ideas are based on the common idea that code should not be executed without
checking that it is safe to do so. In each system, safety checking reduces to proof checking,
type checking, or bytecode checking, respectively. But note, that all three designs are extremely
vulnerable to design mistakes — a logic in which safety proofs are expressed must be consistent (if
falsehood is derivable, than any property is derivable), a type system for assembly language must
be sound, and so must be the notion of safety attributed to Java bytecode. One possible research
direction is to make Twelf a useful development and verification tool. Future experiments in
this area will shed some light on the limitations and possible extensions of the Twelf system.

Protocol design. The common practice in the design of network and authentication protocols
is not to use any formal tools. Important properties are verified only after a design is completed
and implemented. Protocols can be modeled in proof assistants such as PVS [ORS92], model
checkers, such as SMV [CGL94] and they are examined for different properties, such as liveness,
and in the case of authentication protocols for freeness of attacks [MCJ97].

257

258 9.1. FUTURE WORK

Twelf has not been applied to protocol design yet, but it woiüd be a very instructive experi-
ence to do so. We suspect that by using Twelf as a development tool, the design of protocols can
be made more secure since a priori specified safety and security properties can be verified and
checked throughout the design process. Therefore, design mistakes can be caught early. After a
successful design, we foresee Twelf to output the verified code (in a compilable language) that
implements protocol stacks, or client/server architectures for authentication systems.

As for the formal development of security protocols, experiments in this domain may reveal
shortcomings in the design of Twelf that can give indications for future research.

Software engineering. The functionality of a software module is typically defined through
an interface that contains formal descriptions of the computational behavior of functions and
procedures provided by the module. The languages used to describe this kind of functionality
are typically logics or type theories; the challenge is to design them in such a way that they can
capture invariants, while preserving soundness. Twelf is a tool that can help developing these
kind of languages.

9.1.2 Adaptation of M£

It is likely that the experiments with real-world systems suggest possible extensions of Twelf
such as extensions to the underlying logical framework LF and also extensions to the meta-logic
M-2- As presented in Section 2.3, LF is a logical framework, which satisfies the requirements for
adequate representations of a formal systems such as logics and programming languages. But
there are many important extensions of LF, some of them characterized in Barendregt's A-cube,
and other substructural logical frameworks that may be of practical interest.

Polymorphic logical framework. Even though not discussed in this thesis, one can imagine
an extension of this work to other logical frameworks. For example, adding polymorphism to
LF while preserving canonical forms may be possible but it is certainly challenging, and it is
even more challenging to extend the meta-logic .M.j" discussed in Chapter 5 accordingly. We
leave this research to future work together with an extension of Twelf by type constructors.

Linear logical framework. The linear logical framework (LLF) is a substructural logical
framework. It is a conservative extension of LF and goes back to work by Cervesato and Pfenning
[CP97a]. LLF extends LF by a resource-oriented assumption concept, inspired by linear logic
[Gir87]. Linear assumptions are organized in linear contexts which obey only one of the standard
structural rules: exchange. Weakening and contraction cannot apply to linear contexts. This
gives linear assumptions the flavor of resources: Assumptions can neither disappear nor be
duplicated. The advantage of a linear logical framework is, that it allows a concise modeling of
resource oriented problems such as for example, the theory of functional programming languages
with references. Binding of a value to a reference cell is represented as a resource, and because
of properties of the linear logical framework update of reference cells can be modeled directly
[CP96].

Ordered logical framework. The ordered logical framework derives from the linear logical
framework by dropping the last remaining structural rule: exchange. First case studies by Pfen-
ning and Polakow [PP99] have shown that ordered linear logic is beneficial for the representation

258

CHAPTER 9. CONCLUSION 259

of aggregate constructs such as stacks. This framework inherits all properties form the logical
framework, and in addition, assumptions can only be consumed in same order they have been
assumed. Again, in the area of functional programming languages, there are several examples
of languages which can be very elegantly represented in an ordered linear framework [DP95].

9.1.3 Extensions of M^

Quantifier Alternations. In the current development, Twelf accepts only Il2-formulas, i.e.
formulas that start with a block of universal followed by a block of existential quantifiers. How-
ever, many examples lie outside this fragment. We leave an investigation of this issue to future
research.

Adding new logical connectives. From a logical point of view, M% is relatively impov-
erished. Not only that it defines only few connectives, but it neither provides nor allows the
user to define new predicates. In particular, M^ is missing other logical connectives, such as for
example disjunction, implication, and negation; it is also missing mechanisms to express equality
of derivations and subterm relations. In many cases, if needed connectives and predicates can
be encoded in LF; but in future versions, it might be sensible to extend the meta-logic directly.

Equality is a good candidate for a built-in predicate into M.\. It allows the formulation of
theorems that express the unique existence of a derivation. The drawback of adding equality
to the meta-logic is, that the theorem proving aspects will get harder. Unification problems
must now be considered modulo equational theories [Sny91]. A different research direction is to
investigate how M.\ can be extended by new unique existential quantifier 31.

Context schema subsumption. In Section 6.3 we have introduced a very simple and direct
definition of context schema subsumption. For larger developments it may be important to relax
the subsumption condition, for example, by extending context blocks by unrelated parameter
declarations. How exactly a refined subsumption criterion could look is an important design
question; in addition, it interacts with other design choices such as the design of the modules
system or the scope of regular context extensions. These are important questions and should be
addressed in future research.

9.1.4 Implementation of jv[\

Despite its already impressive deductive power, the implementation of the meta-theorem prover
in the Twelf system is currently only a prototype. No sophisticated optimizations have been
applied so far, and the implementation is incomplete with respect to the theory which has
been described in thisv thesis. For example, many of the techniques developed for traditional
inductive theorem provers seem applicable in our setting, but none has actually been adjusted
or implemented.

Termination orderings. The prototype implementation of the meta-theorem prover is re-
stricted to proofs by structural induction. The various termination orders defining the proofs of
the lemma in this thesis, for example, syntactically restrict the form of the induction hypotheses.
In particular, termination orders are lexicographical and simultaneous extensions of the subterm
ordering which are expressive enough for many proofs, but not necessarily all. The soundness

259

260 9.1. FUTURE WORK

proof of compiling Mini-ML to the CPM machine, for example, requires as proof principle proof
by complete induction. In future research we enrich the notion of termination order by derived
reduction information as already implemented in the termination checker for Twelf [PP00].

Integration. Currently, a successful application of Twelf's mcta-theorem prover depends cru-
cially on the appropriate choice of the various bounds for filling, splitting, and recursion, and
the heuristic that selects the first universally quantified variable to split on. During runtime,
a splitting operation is executed upon the failure of the preceding filling operation. Therefore,
filling slows the meta-theorem prover down. One possibility to improve the theorem provers
performance is to consider filling and splitting operations simultaneously. It is left to future
research to integrate the different operations of the meta-theorem prover.

Proof Planning. Proof planning was introduced by Alan Bundy et al. [BvHHS91] for in-
ductive theorem proving by a special search heuristic called rippling. This heuristic works
particularly well for equational arguments used in proofs by mathematical induction. The ques-
tion of how rippling scales to the setting of non-standard induction techniques opens a new area
of research.

Failure treatment. A very important area of research is the treatment of proof failure. The
theorem prover must supply the user with appropriate messages pointing to the problem of
design mistakes in the case of failure. In the current prototype implementation, the prover
is too eager to continue; it will continue to apply splitting operations that do not advance the;
search for a proof. How can the prover distinguish between promising an non-promising splitting
operation? How can it return information to the user such as, for example, that a particular
inference rule renders a logic design unsound, or that a proof does not go through because the
world extension was assumed to be closed? If meaning could be assigned to failure, intelligent
error messages could be generated and system design cycles would shrink tremendously.

Optimizations. Among the many restrictions and prototype features of the Twelf system,
there is one that is particularly important; many decisions about which operations to apply next
depend on the filling operations. Most of the time spend by the theorem prover in Figure 8.11,
for example, is due to filling.

Currently not employing any kind of advanced implementation techniques, the LF theorem
prover uses straightforward, depth first, iterative deepening search that is limited only by a filling
bound. We believe that the efficiency of the theorem prover could be tremendously improved
by other techniques such as the inverse method [DMTV99], the tableaux method [Häh99], in
connection with special indexing techniques [RSV99].

Proof translation. Trusting a proof means to verify it. One of the shortcomings of the
current prototype implementation of Twelf is that it does not provide an independent meta-proof
checker. Even though we hope that it is small, and verifiable correct, its design is significantly
more complicated than that of the standard LF type checker because it relies on a correct
implementation of pattern unification for coverage analysis. As alternative, in another line of
research we want to investigate how to convert higher-order encodings and their meta-theory
into the language of standard inductive definitions, interpretable and verifiable by trusted and

260

CHAPTER 9. CONCLUSION 261

well-understood theorem provers, such as Coq [DFH+93], Lego [LP92], Gandalf[Tam97], Spass
[Wei97], TPS [AINP90] and others.

Tactics. Independent experiments with the meta-theorem prover have shown that its current
strategy is not powerful enough to reach satisfactory results in certain application areas. The
main drawback of the implementation is that it has a fixed heuristic which selects the assumption
the system will splits next. In addition, the meta-theorem prover does not implement back
tracking. On the contrary, whenever an operation is applied, Twelf commits to it once and for
all.

Twelf's built in heuristic is unsatisfactory because it is programmed in such a way that it
never splits assumptions that occur in the type of another. These assumptions are called index
assumptions. In most of our experiments, this design decision drastically cuts down the size of
the search space, but unfortunately, in other situations a successful proof relies on the ability to
split index assumptions.

Therefore, another very challenging research direction is the design of good heuristics, better
search strategies, and user-defined tactics to guide proof search and the selection of assumption
to be split.

9.1.5 Functional Programming in .Mj

The proof term calculus of M% bears the basic elements of a programming language, such as
a notion of a recursive function, application, and definition by cases. Datatypes are expressed
in the logical framework LF in form of LF signatures. By omitting side condition (5.1) that
ensures termination, and side condition (5.2) that ensures coverage, we obtain a simple func-
tional programming language whose functions range over LF-objects. In future research we will
investigate how to turn M% into a programming language by adding references, exceptions and
a module system. This research extends into the areas of compiler and garbage collector design.

9.2 Summary

The contributions of this thesis are manifold. We have presented a meta-logic M^ whose
quantifiers range over LF objects. The meta-logic is designed to formalize inductive arguments
about higher-order encodings of formal systems in LF. Therefore, one of the main contributions
of this thesis is a solution to the problem of how to bring together inductive reasoning and
higher-order representation techniques.

In several experiments we have shown that Mf is expressive enough to formalize proofs
of many important properties about logics, programming languages, and type systems. Those
formalizations are so elegant, that they can be automatically constructed by the meta-theorem
prover that is implemented, as a prototype, in the Twelf system.

Twelf has been used to develop and prove several fundamental results of computer science
and logic with a high degree of automation. Among the examples, are the Church-Rosser
property of the simply typed A-calculus, which we have discussed in this thesis in depth, and
the cut-elimination theorem for intuitionistic first-order logic.

261

262 9.2. SUMMARY

262

Appendix A

Inference rules

A.l Meta-Logic M%

Judgments:

Provability of general formulas: 3 \-£ Q G G
Provability of formulas: \l>; A; 3 hs;s P G P
Inference: *; A; 3 hs.s D G *'; A'

Rules

■;-;E^.sPeF

3 Hs box S.Pe ns. F
generaIR

xeGeE

ShrXGG
mhyp

(6.1)

(xef)eA

f;A;5hS;SxeF
axvar

*;A;SF()eT
RT

*, x : A A; 3 hs;<? P G P y,pL;A;E\-x-SP£F
RV

*; A; E hs;s Ax : A P G Vx : A P *; A; 3 hE;5 ApL. P € II/A P
Rn

*hE;SM:J4 *;A;£hE;SPeP[M/:r] #; A; 3 hE;S P G Pi f;A;HhE;SF26F2
R3 RA

*;A;3hE;5<M,P)G3ar: AP *;A;3hE;s(Pi,P2)ePiAP2

*; A; 3 \-s.s D G *'; A' *, *'; A, A'; 3 F-£;S P G P

*; A; 3 hS;S let P> in P G P

263

sei

264 A.l. META-LOGIC Mj

 Ldone
*;A;ShE;S -G •;•

S{L) = SOME Cx. BLOCK C2 * hS;S o- : Ci * hE;S /» = [(T]C2 *,/;A;»hs.si)G$';A'

*; A: 2 hs,s v p
L. D G IIpL. (*'; A')

<3>;A;2hE.5PG V.T : AF tf r-E.<j M : ,4 $;A.yef[M/i]:Shs.,i)e$';A'
 : : : Lv

*; A; 2 hEis y G F[M/.x] = P M, D G *'; y € F[Af/a:]. A'

*; A; S hS;,s P G npL. F /9,L G * tf hE;.s p' = p 1>; A, y G F\p'/p];E hE,s P G *'; A'

*; A; 2 hE;«j y G F[p'/p] = Pp',De *'; y G F^'//*], A'

2 hs Q G DS". F *; A, y G F; 2 hE.s D G *'; A'
 : LS

*; A; 2 HE;Ä y G F = lemma Q, P G *'; y G F, A'

S' subsumes S (5.4)

$;A;5hE;SPG 3.x: AF *,a: : A;A,y G F; 2 hE:Ä Ö£ *'; A'

Lnew

LIT

tf; A;2 hE,<j (a: : Ay 6^=^,0^: 4,*';yG F A';2

*;A;ShE;SPeF, A F2 *; A?x G F; 2 hE;.s D G *';A'

*;A;ShE;sxeFi = TTJ P, P G $';x6fi,A'

1>; A; 2 hE;S P G P A F2 *: A:x G F2; 2 hS;,s P G 1>'; A'

1>; A; 2 hE;<? xeF2 = Jr2P^e *'; x G F2, A'

*;A,x G F: 2 hE;.s P G F
Rctx

L3

LA,

LA,

*;A;Shj;.s/ixe F.P EF

P terminates in x (5.1)

*; A hE:<j ^; «J e *'; A' #'; A'; 2 hE;.s 0 G F
case

*; A; 2 hE;5 case (V>; £) of Q G Fty-»]

S7 is a complete case cover (5.2)

 base
*:A;2hE;,s'- GF

*' r-E.s V G * *; A: 2 r-s.<; QeF *'; ty] A; 2 hE.s F G F[if)]
 : : a|t

; A; 2 r-E;Ä ft, (' t> ^ H-> F) G F

5'' is minimal (5-3)

264

APPENDIX A. INFERENCE RULES 265

A.2 Operational Big-Step Semantics
Judgments

Evaluation ll-P^F
Assumption $ h D <->• 77; 5
Selection $ h (7/;; 5) ~ Ü >-> V

Rules

ev_Lam : : evJam
$h Ax: A.P'-t kx:A.P $ h ApL. P <^> XpL. P

$hP^F $ h P: <->■ Vi $hP2HF2
evJnx - ev_pair ev_unit

$\-(M,P)^(M,V) $\-(PuP2)^(V1,V2) *M>^0

$hß^^i $hP[id$, </>;£] <^V

$ h let P in P -4 V
evJet

$ h P[//x E P. P/x] 4F $ h (V>; 5) ~ fi <-► V
 ev_rec ev_case

$ h //x E P. P <-> F $ h case (</>; S)ofQ^V

 ev_empty

$hP^(M,y) $ h P[id$, M/z; l//y] -> i/,'- 6'
 — ev_split

<f>h (x:A,y£F} = P,D^ M/x, tp'; V/y, 8'

$ I- P -4 Ax : A. P' $ H P'[id$, M/x] 4F $ h P[V/y] -4 V'; 5'

$ h y G F = P M, D -4 V'; V/y, 6'

$ H P -4 A/-. P' $ h P'[id$, p/p'} ^V $ h P[V/y] -4 <//; 5'

§,/hD4 V';<*'
 = ev_new
$\-vpL.D^ {\pL.(^;S'))

$ h p -4 (vi, v2) $ h P[v/x] -4 ^'; <y'
 ev_fst

$ h x E Pi = Ti-i P D -4 ^'; Vi/x, <f'

265

ev_App

ev_app

266 A.3. OPERATIONAL SMALL-STEP SEMANTICS

$ (- P «->■ <Vi, V2) $ h D[F2/x] ->• V; 5'
 ev_snd

$ h x € F2 = 7T2 P, D <-> </>'; V2/x, 6'

$hP[f;J] ^ y
.ev.yes

$ h (V>; 5) ~ (fi. (* > V' •-> P)) ^ V

if there exists a i/>" s.t. (V>'; id^) ° (?/;"; <*) = (V;! <*)

 ev_no
$ h (i/r, 6) ~ (n, (* > V'' ^ P)) -^ F

A.3 Operational Small-Step Semantics

Judgment

One-step reduction $ h 5i => S2

Multi-step reduction $ h 5i ==> S2

266

APPENDIX A. INFERENCE RULES 267

Rules

trlet ■ • : :$
trletC : :$
trpair : : $
trpairC : :$
trmix : :$
trmixC : :$
trfst : : $
trfstC : :$
trsnd : :$
trsndC : :$
trinx : : $
trinxC : :$
trsplit : :$
trsplitC : :$
trsubst : : $
trrec : :$
trempty : :$'
trApp : :$
trAppC : :$
trapp : :$
trappC : :$
trassign : : $
trmeta : :$
trnew : :$
trnewC : :$
trcase : :$
tryes : : $

trno :: $:

C > let D in P => $; C, let • in P > D
C, let • in P > (</>; <*) =► $; Co P[id$, ?/>;£]
C>(Pl,P2) => $;C,(.,P2)>P1

C,(.,P2)OF =» $;co(y,p2)
C><Vi,P2) => $;C,(Vi,.)>P2

C,(Fi,.)>F => *;C>(Vi,7>
C>xGP = 7TiP,D =» $;C,xGP = 7ri •,£>> P
C,xGJF = 7n«,Z>>(Vi,Vr2> =► $;C,(«;Vi/x,.)i>D[Vi/x]
CoxeP = 7r2P,P =» $;C,xGP = 7T2.,JD>P
C,xGF = 7r2.,I>><Vi,V2) => $;C,(.;72/x,«)>JD[Vr

2/x]
Co(M,P) =^ $;C,(M,.)oP
C,{M,*)>V => $;Co(M,F)
C>(s:Aj6ii')=P,D ==> $;C,{i:A1yeF)=i,D>P
C,(I:AjeF) = .,i)> (M, F) =* *; C, (M/s, •; V/y, .) > £>[id*, M/x; V/y]
C,(M/x,*;V/y,»)>(il>;6) =*► $; Co (M/x, V; V/y, 8)
CoMxeP.P =*► $;C>P[/JX6F.P/X]

Co- =» $;Co-;-
CoxGP = PM,P => $;C,xGP = .M,fl>P
C,XGP = «M,POA:E: AP =*► $; C,x G F = ;D o P[id*, M/x]
CoxGP = Pp,P =► $; C, x G P = • p, D o P
C,xGP = .p',PoApL.P =* $;C,xGP = .,PoP[id$,p'/p]
C,xGP = »,PoF ==» $;C,(«;V/x,»)>£>[V/x]
C,(.;F/x,.)o(V>;<5) =* $;C>(^;y/x)(()
C»vpL.D =» $,pL;C,(A/9

L.(.;.))oP
pL;C,(A/9

L.(.;.))o^;<5 => $; C > XpL. ty>; <J)
Co case (?/>;£) of fi =» $;C>(^;5)~Q
C>(iP;8) ~ (fi,(*'oV'^P)) =► $;C>P[f;5]
if there exists a V1" s.t. (V1'; idA) ° (^"; 8) = (^; 5)

C o 0/>; 5) ~ (fi, (*' >^P)) => $; C o (</>; J) ~ fi
if there is no i/>" s.t. (^'; idA) o (?//'; 5) = (?/;; 5)

■trid

Si 5*2 i>2

5i =^ S3

trstep

A.4 Typing Rules for Continuations

Judgments

Valid continuations: <i> h C G T

267

268 A.4. TYPING RULES FOR CONTINUATIONS

Rules
tcdone

$hC€F]=>F $, *; A h P G F

$hC,let «inPe (*;A) => F

$hC,(.,P) eF] => F

$ h C G F] A F2 => F $; • h V G Fj

tclet

tcpair

tcmix
$hC, (U, •) G F2 ^ F

$hC G 3i : A F] => F [$] h M : 4
 tcinx

$ h C, (M, •} e F[id*, Af/a] => F

fhCe (1';xGF,A) =>F ^xGF] ho: *;A

$ h C, (x G F = 7Ti •, £>) G F A F2 => F

$hCe(*;xeF2,A)^F $;xGF2h£>: *;A

$ h C, (x € F2 = 7T2 •, D) 6 F A F2 => F

$hC€ (*;xGFi,A) => F $;xeFihD:*;A

tcfst

tcsnd

$ h C, (x G Fi =•,£>) G Fi => F

$hCe(tf;xeFi,A)=>F $;-hl/eF,

tcassign

tcmeta
$h-C,(.;F/x,«) G (*;A) ^F

$hC6(.T:i,1';y€Fi;A)^F #,.T : Ay G F h D G *; A
tcsplit

$ I- C, «a: : A, y G F) = •, D) G 3x : A Fx =*• F

$hCG (.T: A*;y GFi,A) =^F [$]hM:A $; • I- 7 G F[id*, M/a:
tcsubst

$ h C, (Af/a:, •; U/y, •) G [id*, M/a:](#; A) =» F

$hCe(*;yeF, [id*, M/x], A) =» F [$]hM:i $:yeF, [id*, M/a;] h D G *; A

$hC,(ye Fi[id*,M/x] = • M,£>) G Va : A F => F

$hCG (*;xGF1[id*,/>7p],A)=»F [$]hp = p' $;x€Fi[id*,/o7p]l-I>e*;A

tcApp

$hC,(xe Fi[id*,p'/p] = • p', D) G lip7'. F =* F

$hCGlIpL.(<I';A) =^F

tcapp

tcnew
$,pLhC,(ApL.(.;.))G(*;A)^F

268

APPENDIX A. INFERENCE RULES 269

Judgments:

Rules:

Valid states: h S € F

 tsprg
h($;C>P)eF

 tsdec
t- ($; C > Z>) e F

h ($; Co (?/>;£) ~fi) GF
tscase

h($;C>^;<5)GF
tssub

269

270 A.4. TYPING RULES FOR CONTINUATIONS

270

Appendix B

Operational Semantics

B.l Preliminiaries

B.l.l Abstraction

Lemma 6.5 (Well-definedness of abstraction)

1. For all contexts T\
ifTi,T2\-A: type
thenTi hUT2.A: type

2. For all contexts Y\
ifYi,Y2\-M:A
thenTi H XT2.M :UT2.A

Proof: , using Lemma 6.3. A detailed proof can be found in Appendix B.l.l. □

Proof: by induction over ^(1) and ^(2)

1. Case: T2 = ■:

Ti \- A : type by assumption
Ti hn-.A: type by Definition 6.4

Case: T2 = x:A',T'2-

Case: A' ^ A:

F\,x : A',T2\- A: type by assumption
V::Ti,T'2\-A: type by Lemma 6.3 (2)
TihUT'2.A: type by i.h. on V
Yx V- ILE : A', r2. A : type by Definition 6.4

Case: A' -< A:

V :: T\,x : A',T2 h A : type by assumption
Ti,x:A'\- nn>. A : type by i.h. on V
Ti h Ux : A'. {UT'2. A) : type by rule fampi

271

272 B.l. PRELIMINIARIES

T^Uix-.A'^-A-.type by Definition 6.4

2. Case: T 2 —

Ti h M :A
Tx \-X-.M:U:A

by assumption
by Definition 6.4

Case: F2 = x:A',V2:

Case: A' / A:
Ti,x:A'S'2\-M:A
V::Tur'2^ M :A
r\ h XT'2. M : UT'.2. A
Ti h A(.T : 4', r'2). M : U(x : A', T'2). A

Case: A' -< A:

V::Ti,x:A',T'2\-M:A
Tux:A'hXT'2.M:UT'2.A
T] h Xx : A'. XT'2. M : ID: : A'. (UT'2. A)
Ti h X(x : A', T2). M : U(x : A', T'2). A

by assumption
by Lemma 6.3 (2)

by i.h. on 2?
by Definition 6.4

by assumption
by i.h. on T>

by rule objlam
by Definition 6.4

D

Lemma 6.7 (Abstraction)

and V :: *0; • \- ipi;- e *i;-
then $>()■,■ \-^uf; 6' G *!,*'; A'
and%l)'',6' = \pL.(i/);6)
and 9'; A' = Il/.(#;A)

2. //*0,^;-l-^i,/o/p;*e*i,/oL;A
anrf X> :: *0;- h ?/>i; • € *i; •
fAen *0;- \~ ipi;6' e$![;A'
and ■;S' = XpL. (•;S)
and •; A' = UpL. (•; A)

Proof:

by induction on \I/:

Case: * = •

£:: $o,/i-l-^tp/p;«G*i/iA
Qi ::*0;-i-^i;<J'e*i;A'
Q2::-;5' = A/.(-;^)
Q3"-;A' = npL.(.;A)

by assumption
by i.h.(2) on 5,2?
by i.h.(2) on £,V
by i.h.(2) on£,P

272

APPENDIX B. OPERATIONAL SEMANTICS 273

Case: $ = x : A,®'

£ :: tf o, PL; • H ^i, p/p, M/x, V>'; 6' e^>i,pl,x: A, *'; A' by assumption
by several inversion steps

Up.A[tpi,p/p] Lemma 6.5(2) on £\
(Up. A)[ipi] Definition LF substitution

£3 :: *0,pV H ^pi,Xp. M/x, p/p,^;8' e^,x: Up. A,pL,<Ü"; A"
by limited LF exchange property

£1::^pLhM:A[ipup/p]
£2 :: *o \~ Xp.M
£2 :: V0\- Xp.M

£i::V';A" = {(xp)/x\(V;A>)
Vi :: *0;- \-ipi,\p-M/x;-£ *i,x : Up. A; ■
Qi :: $o;-\-il>1,\p.M/x,il>";5" G^i,x: Up.A,^'";Ar

V3::^'";A'"^UpL.(^";A")
Q2 :: XpL. (M/x, </>'; 8') = Xp. M/x, V"; 8"
Q3 :: lb/, (a; : A, #'; A') = x : IlpL. 4, *(4); A<4)
Ki :: *(4); A(4) = UpL. ([(x p)/x](V; A')) = UpL. (*"; A") = *'"; A"

trivial
by sass on V£2

by i.h.(l) on £A,T>\
by i.h.(l) on £4,X>i
by i.h.(l) on £\,V\

by rpass and V2

by rass
by rass

2. by induction on A:

Case: A = ■

*o;-H^i;- G *u-

Case: A = xGF,A'

£ :: *o,/r h^p/p-P/^S' G *i,pL;x G F, A'
fi :: *o,/oL;- H in, P/P; 8' G *i,pL;A'
Pi :: tf0;-r-^i;<y"e#i:A"
P2::-;<5" = ApL.(-;^)
P3::-;A" = npL.(-;A')
Qi :: *0;- I" t/>i;\pL.P/x,5" G *i;x G IIpL.F,A"
Q2::ApL.(-;F/x,5') = -;Api.P/x,5"
Q3 - npL. (•; x G P, A') = ■; x G UpL. F, A"

by assumption V

by assumption
trivial

by i.h.(2) on £X,V
by i.h.(2) on£i,X>
by i.h.(2) on£1;£>

trivial
by rpmeta on V2

by rmeta on P3

D

B.1.2 Substitution

Lemma 6.20 (Substitution lemma for meta-substitutions)

1. IfV::^;Ah PeF
andV :: $';A'hip;8£ *;A
then *'; A' h Pty>;8] £ Fty].

2. P::$;AhDef";A"
andP::*';A'l-^;<Je*;A
then *'; A' h £>[</>; 5] G ty]tf"; ty>, id*»]A".

273

274 B.l. PRELIMINIARIES

3. //Dj-^i^h^j^e^A!
and V2 :: *3; A3 h ip2] 82 G *25 A2

töen *3;A3h (^1^1)0(^2;^) e*i;Ai
and (?/>i; #1) ° (tp2'i ^2) = (V'l ° V;2, #') /or som« meta-subsitution 8'

Proof: by simultaneous induction over V(l), V{2), and V\{Z).

(xef)eA
1. Case: V = axvar

$;AhxeF

£ :: x[V>; <S] = 8(x) by inversion on £
A'; *' h <J(x) G F[ip] by Lemma 6.19 (1) on P, P,

Case: P = RT
*;Ah()GT

£ :: (}[V;;^] = {) by assumption
Q::$';A'h(jeT by RT

Pi
V,x:A;AhPeF

Case: P = RV
V;A\-Ax:A.PeVx:A.F

V\ :: *', .x : A[i/)}: A' h ^, z/z; <5 : *, a; : A: A by Lemma 6.16 (2) on P
£ :: (Ax : A. P)[ip-, 8] = Ax : A[i/)].P' by assumption
£\ :: P[ip,x/x; 8] = P' by inversion on £
Qi :: *',a: : Aty]; A'hP'e FfrM/a:] by i.h.(l) on VUV{ and £,
Q :: *'; A' h A:c : A[i/)]. P' G Va: : A[i/>].F[il>, x/x] by RV on Qt

Q :: *'; A' h A:r : Aty;]. P' G (V:?; : A F)ty;j by sAII

Pi
$,/)L;AhPe F

Case: V = Rn
tf;Ah A/>L.PeIl/.F

Vi :: $', {[i/>]p)L; A' h ^, [V'W/>; * : *, PL- A by Lemma 6.16 (2) on V
£ :: (\pL. P)[tfr, 8} = X([i/>]p)L. P' by assumption
£\ :: P[ip, [ip]p/p; 8} = P' by inversion on £
Ö1 " *', (Mp)L; A' hP'e Ffo!>, [^p/p] by i.h.(l) on VUV, and £,
Q :: *'; A' h \{[ip]p)L. P' G n([^]p)L. Fty, bl>]p/p] by RII on Q,
Q :: *'; A' h \({^]p)L. P' £ (ILpL. F)[t[>] by sAIIP

Pi P2

^\-M:A *;AhPeF[M/i]
Case: P — R3

$;Ah <M,P> G 3x: AF

274

APPENDIX B. OPERATIONAL SEMANTICS 275

V :: *' h V G *
Qi :: *' h M[</>] : Aty]
£::<M,P)[^] = (M[V>],P')
£i::P[^;<J]=P/

Q2 ::f';A'hP'eF[I/i]M
Q2 :: *'; A' HP'G F[^,x/a;][M[^]/x]
Q:: *';A'h (M[^],P) £ 3x : A[ip]. F{^,x/x]
Q :: *'; A' h (M[^],P') G (3x : 1F)W

by Lemma 5.21 on V
by Lemma 6.2 on P' and V\

by assumption
by inversion on £

by i.h.(l) onP,£>i and £x

by Lemma 6.14 (1)
by R3onQi,Q2

by sEx

Pi P2

*; A h Pi € Pi tt; A h P2 ef?
CflSP! T) — RA

*;Ah(p,p2) G Pi A P2

£:: (P ,P2)[^5] = (P1',P2}
£i- :P ■^;<J]=P1'
£2: :P2 :^;^ = p2

Ö1 ::* ';A'l-P[GFiM
Q2 :: * ';A'hP^GP2[</>]
Q: *'; A'h(P1',p^)eP1[^]AP2^]
Q: *'; A'h(P1',P^)G(Pi AP2)[V]

X>2

Case: 7! ■) -

;Ähße";A" *,*"; A, A" h-PeP

by assumption
by inversion on £
by inversion on £

by i.h.(l) on P, V\ and £1
by i.h.(l) on P,P2 and £2

by RA on Qi, Q2

by sAnd

*; A h let P in P G P
sei

by assumption
by inversion on £

by i.h.(2) onP,£>i and £x

£ :: (let D in P)[^; 5] = let D' in P
<?l ::D[^;(J] = D'
Ql :: *'; A' h P' G [$#"; ty, id*«]A"
P2 :: *', [$#"; A', [</>, id*«]A" h il>, id*«; 5, idA« : *, *"; A, A"

by Lemma 6.16 (3) on Pi
£2 :: P[?/>,id*»; 5, id^»] = P'
Q2 :: *, ty]tf "; A, [V>, id*«]A" hP'e Pty;, id*«]
Q2 :: *, ty]tf "; A, [</>, id*«]A" hP'g P[^]
Q:: *'; A' h let P' in P G FU]

by inversion on £
by i.h.(l) on P2,P2 and £2

trivial
by sei on Qi,Q2

V-i

Case: V =
*;A,xGPh P GF

*; A h //x G P. P G F
Rctx

Pi ::f';A',x£F[^] h </>; <5,x/x : *; A,x G P
5::(/ÄeF.P)[^i«] =/ixei?[#P'
^::P[^;6,x/x]=P'
Si ::*';A',xGPMhP'eFM
ß::*';A'h/jxeF[#P'€^]

by Lemma 6.16 (3) on P
by assumption

by inversion on £
by i.h.(l) on Pi,Pi and £\

by Rctx on Q\

275

276 B.l. PRELIMINARIES

Z>i

Case: V =
;Ahf;«":";A

V2

*"; A"hfieF

; A h case «; <") of fi G F[i/>"]
case

5 :: (case (V/'; 5") of fi)[^; <J] = case (V/'; tf") o (V;: S) of ft

:F::(V>,;<J') = (V>V',)°foM)
^"i :: *'; A'h V/; <*': *"; A"
JF2 :: V/ = V" o V>
Q :: *'; A' h case (t/>"; <S") o (^; <J) of fi G Fty" o i/>]
Q :: *'; A' h case (V;"; <J") o (V;; 5) of fi G Fty'lty']

by assumption
by i.h.(3) ou7>,X>]
by i.h.(3) onP,2?i
by i.h.(3) onP,Di

by case on T\, 2?2
by definition

2. Case: £> =
1>; A h • G v

Ldone

£ :: [# = •
ß ::*'; A'!-•€•: •
Q::tt'; A'!-•£[#;[#

by assumption
by Ldone

by def. substitution

Vx : : S(L) = SOME C\. BLOCK C2

Vr : : # 1- <T : d
V3 : : *hp= [a]C2

P4 : : *,/;AhZ)e*";A"
Case: V = Lnew

$;AHi//jL.ZJen/)L.($";A"

£ :: [y pL. D)[t/); 5] = v ([i)>]p)L. D' by assumption
£\ :: D' = D[tp, [i/>]p/p: S] by inversion on £
Vi :: *', ([#>)L; A' h V, M/Vtf * : *> PL\ A by Lemma 6.16 (2) on V

. 04 :: *', (M/o)il A'hö'e [V;, [V'Wp]*"; [V^, [V'WP, id*»] A"
by i.li.(2) on Vi,V\ and £4

Q2 :: V \-a o %/> : C\ by Lemma 6.12 (1)
ß3 :: *' h \ty\p = C2[ao V>] by Lemma 6.12 (2)
Q :: *'; A' h v {[^)P)L.D' G n([#>)L. [ty, [tl>]p/p]V"; [tf>, ty]p/P, id*»]A")

by Lnew on V\, Q2, Q?, and Q,\
Q :: *'; A' h v {[^}p)L. D' G {Up1. (*"; A"))[t/>] ' by Lemma 6.17

Case: V

V2

V3

:*;AhPGVi:AF

: *; A, y G F[M/.T] hÖG *"; A"
LV

*; A h y G F[M/.-r] = P M,D€ tf"; y G F[M/x], A"

£ :: (y G F[M/.T] =PM, D)[^; <J] = (y G F[Af/a:][^] = P1 M[i/i], D')
by assumption

276

APPENDIX B. OPERATIONAL SEMANTICS 277

£\ :: P[ip; ö] = P' by inversion on £
£2 " D[ip; 5, y/y] = D' by inversion on £
Qi :: *'; A' hP'eVs: A[ij>].F[il>,x/x] by i.h.(l) on V,VX and £1
Q2 :: *' \~ M[ip] : Aty] by Lemma 6.2
Vi :: *'; A',y G F[M/x]M h V>! <5,y/y : *; A,y G F[M/:r]

by Lemma 6.16 (3) on P
Q3 :: *'; A',y 6 F[M/s][^] h £>' G [$*"; [</>, id*«]A") by i.h.(2) on P^ and £2

Q3 :: *'; A', y G F[V>, z/a;][M ty>]/a:] hß'e [$#"; ty>, id*»]A" by Lemma 6.14 (1)
Q :: *'; A' h y G Fty,a:/a:][Af[V>]/a:] = P' M[i/>],P'

G [V]*";y G F[V,x/a;][M^]/a:],[V,id*»]A"
by LV on Qi, Q2, and Q3

Q :: #'; A' h y G F[Af/ar]ty>] = P' Mty], D'
G M*";y€ F[M/x][il>], ty,id<p«]A" by Lemma 6.14 (1)

Q :: *'; A' h y G F[M/a:][</>] = P' M[iJ>],D'
G [$#"; [V>, i<V](y G F[M/x], A") trivial

Pi: :$;AhPen/)LF

P2: : p'1' G *
Vz: : * h p' = p
VA: :^;A,y £F[p'/p]h De *' ;A"

r1.-.™. T> _ 1 TT

:A hy G ^7p]=Pp',JDG";yG WP],
Lll

A"

£ :: (y G F[p'/p] = P//)D)[^;«] = (yGF[p'/*]=P ' w, D') by assumption
£1: :P[^5} = P' by inversion on £
£2: •■D[*l>;6,y/y] = = £>' by inversion on £
V : : *' h V G # by Lemma 5.21
Qi ::^';A'hP'G n([ip}p)L.F[i,,p/p] by i .h.(l) on?,D! and £1
Q2 :: ([W)L G *' by Lemma 6.19 (2)
Q3 :: *' h [ip}p' = [tp]p by Lemma 6.23 on V and P2

Vx :: *'; A',y G F[P7P][V>] H ^;<*,y/y : *; A,y G P[p'/p] by Lemma 6.16 (3) on V
Q4 :: *'; A',y G P[p'/p][^] H P' G [$*"; [V>, id*»]A" by i.h.(2) on VUV4 and £2

Q4 :: *'; A',y G F[il>,p/p][[il>]f//p] h D' G ty>]#"; [^,id*»]A" by Lemma 6.14 (2)
Q :: *'; A' h y G P^,p/p][^]p'/p] = P' [</>]p',P'

G M*";yG F^p/pHW/p], [^,id*»]A"
by LÜ on Qi, Q2,Q3,Q4

Q :: *'; A' h y G F^/pM = P' [^]p', P' G [</#"; y € F[P7PM [</>, i<V]A"
by Lemma 6.14 (2)

Q :: *'; A' h y G F[P7PM = P' [i/>]f/, D' G [</#"; [</>, id*»](y G Ftf/p], A") trivial

Vi V2

■\-xQenS'.F $;A,yeFhE;Si)6$";A"
Case: V = |_S

*; A hS;S y G P = lemma Q, D G *"; y G F, A"

£ :: (y G F = lemma Q, D)[if>; 5] = (y G F — lemma Q, D') by assumption
£\ :: D[xp; S, y/y] = P' by inversion on £

277

278 B.l. PRELIMINIARIES

F[il>] = F F is closed
. • V\ :: *'; A', y G F h ^; 5, y/y : *; A, y G F by Lemma 6.16 (3) on V

'■' Qi::tt',A',yeFh £'£[$#"; [VMd*»]A" by i.h.(2) on VhV2,£l

Q::*',A'hyeF = lemma Q, P' G [V;]*"; y G F, [V;, id*»] A" by L~ on Pi, Q]

Q :: *', A' h y G F = lemma Q, P' G [V>]#"; [tl>, id*»](y G F, A") trivial

Pi P2

*;AhPe 3a: :A.F q,x : A:A,y <E F \- D <E 1>"; A"
Case: P = : [_3

V;A\-(x:A,y£F) = P,Dex: A,V";y € F,A"

£ :: ((.r : 4,y ef) = P,D)[^6] = ((x : 4[V>],y G F[^x/x]) = P',D')

by assumption
S\ :: P['</>; <^] = P' by inversion on £

£2 :: Z>[V>, 3-'/3;; ^ y/y] = ^' DY inversion on £
Öi " *'; A'hP'G (3.T : A[# F[I/K X/X]) by i.li.(l) on P, P, and £,

Pi :: 1'', x : 4[V>]; A', y G F[V>. x/a;] h V, */^ <fr, y/y : *,a; : A; A, y G F
by Lemma 6.16 (3) on V

Q-2 :: tf',3: : A[# A',y G P[V^.r/a;] h P' G [V>]4'"; [VMCV]A"'

by i.h.(2) on Pj,P2 and £2

Q :: *'; A' h ({.7: : A[^},y G F[r/>,x/x]) = P',D')

G x : A[i/>], [V;]*"; y G Fty, */a;]. ty, id*»]A'"
by L3 on Q\ and Q2

Q :: *'; A' h ((a: : ^[V;],y G F[V^A']> = P',P') G [#* : A. <L>");'[*/>Ad^iy G F A")
trivial

Pi P2

^;AhPGPiAP2 *;A.xGFi hDe*";A"
Case: P = LAj

*; A h x G P = 7Tj P, P G <!'"; x G P, A"

£ :: (x G P = 7T] P, P)[V;; i] = (xe P [V;] = TTi P', P') by assumption
£1 :: P[V->; <$] = P' by inversion on £
£2 :: P[V>; (5, x/x] = P' by inversion on £

ßi :: *'; A' h P' G P[V'] A P2[^] by i.h.(l) on P,Pj and £x

Vi :: *'; A', x G P [ij>] h V; <*, x/x : *; A, x G P by Lemma 6.16 (3) on V

Q2 :: #'; A', x G P [ij>] h P' G ty]* "; [V-7, id*»]A" by i.h.(2) on Pj, P2 and £2

Q :: *'; A' h (x G P[^] = TT, P',P') G [^]*";X G Fl[^], [VM<V]A"

by LAj on Q\ and Q2

Q :: *'; A' h (x G P [tf;] = TTJ P', P') G [V>]#"; [t/>, id*»](y G P, A") trivial

Pi Pi
*;AhPGPAP2 *;A,xGP2hPG $"; A"

Case: P = |_A2

*; A I- x G P2 = 7T2 P, P G *"; x G P2, A"

£ :: (x G P2 = 7T2 P, P)[^; 5] = (x G F2[V>] = TT2 P', P') by assumption

278

APPENDIX B. OPERATIONAL SEMANTICS 279

e2::D[il>;8,x/x]=D'
Q1::^';A'\-P,eF1[i/)]AF2[ip]
?i::*';A')xeF2M^;^/x:*;A,x6i?2
Q2 :: *'; A',x G F2[$\ h £>' G [$*"; [^,id*»]A"

by inversion on £
by inversion on £

by i.h.(l) on P, V\ and £1
by Lemma 6.16 (3) on V

by i.h.(2) on Vi,T>2 and £2
Q :: *'; A' h (x G P2[V>] = ^2 i", £>') G [$*"; x G P2[V>], [V>, id*»]A"

by LAi on Qi and Q2

Q :: *'; A' h (x G P2[V>] = n2 P
1, D') G [V>]*"; [ij>, id^](y G P2, A") trivial

3. Case: T>\ =
*2 ^ ^l G *i

*2;A2 h Vi;- e *i
■sabstract

Qi :: f3h^6 *2
Q2 :: *3 I- V>1 ° ^2 G *i
ftl ::*3;A3r- (i/>ioV>2);- G *i;-

ft2 ::*3;A3(- (^i;-)° W^fc) G *i;

by Lemma 5.21 onV2

by Lemma 5.18 on T>[, Q\
by sabstract on Q2

by Definition 5.19 (cempty)

$2;A2hPe%] *2;A2r-^i;<Ji G*i;Ai
Case: Pi =

*2; A2 h Vi; <5i,P/x G *i; Al5x G F

*3;A3HP[^2;«y Gi^ViM
*3;A3HP[feÄ2]£^ioW

öl
Qi
Q2

03
^1

1»3;A3h (^i;Ji) 0(^2^2) G*i;Ai

(^i;^i) ° (fa; fa) = {i>\ °ip2,S')
$3; A3 1- (</>i o ^2,5', P[V>2; S2]/x) G *i; Ai,x G F

smeta

by i.h.(l) on£>i,X>2
trivial

by i.h.(3) onP'/,P2

byi.h.(3) onP'/,r>2
by smeta on Qi, Q2

ft2 - *3! A3 I- (</>i;<5i,P/x) o (^2^2) G *i! Ai,x G P by Definition 5.19 (cmeta)

D

B.2 Strictness

Lemma 6.30 (Soundness)
If V ::r- $ > 3*'. V> « ??{T} matchable
then there exists a (unique) rj', <!? h 77' £ \J/' and ip o n' = 77

Proof: direct.

Z>i ::$>3*'.^«77{T} =^> $>'T{17}

V2 ::$t>t/{T} =?» $ > T{T}
£ :: • is solution for T{T}
there exists an n = ■ ($ h 77 £ •)
s.t. 77 is a solution of U{T}

for some J7 by inversion

by inversion
by Lemma 6.29

by Lemma 6.28(2) on V2

279

280 B.2. STRICTNESS

n is solution for U\ A T
7] is solution for U\
■q is solution for T A U
rj is solution for T{U}
there exists an rf (<& h 7/ G \I/')
s.t. r/ is a solution of 3<1/'. i/> « ?/{T}
ijj 07/ = 77

by Definition 6.25
by Definition 6.25
by Definition 6.25
by Definition 6.25

by Lemma 6.28(2) on V{

by Definition 6.25

D

Lemma 6.32 (Completeness I)

1. IfU^T
and $ > 3^. C/]{C/2} is given
and rj ($ h 7] G Sb) is a solution of 3\I'. C/i {C/2}
and \P h £/i s<n'ci

<Aen$>3*.f/i{£/2} => *> 3*'.C/{{^}
anrf Mere exists an rf ($ h 7/ G \I;',) «;/tir/j ts o solution of 3^>'.U[{U'2}
and *' h U[strict
and(m,\U[\)<lex(\n\Ui\).

2. IfT = <&> 3$. U\{U2} is given matching stale
then T =^> §>T{U} for some U.

Proof: 1) by inspection of the rules, 2) by induction on (|*I'|, \U\ |).

Case: fl^l, l^l) = (0,0).

T = $>T{U2}
$>T{[/2} =^> <S>t>T{U2}

Case: fl^l, |^|) ^ (0,0).

T = &>3V.Ui{U2}
>3.£/]{t/2} => *>3*'.t/{{^}
(l*'|,|^ll)<lex (1*1,1^11)
$ > 3*'. tf{{C^} =^ $ > T{[/} for some U.

$ > 3*. t/i{t/2} =^ $ t> T{U} for some [/.

by Lemma 6.31 (1)
by mrefl

by assumption
by i.h.(l)
by i.h.(l)
by i.h.(2)
by mtrans

D

Lemma 6.33 (Completeness II)

1. If Upl-
and $ > U{T} is given
and ■ (<& h • G •) is a. trival solution for U{T}
then&>U{T) => $>U'{T}
and • (Q h • G •) is a trival solution for U'{T}
and \U'\ < \U\.

280

APPENDIX B. OPERATIONAL SEMANTICS 281

2. If T = $ > U{~T} is given matching
then<S>>U{T} =** $ t> T{T}

state

Proof: 1) by inspection of the rules, 2) by by induction on |C/|.

Case: \U\=0.

T = $t>T{T}

$>T{T} =** $t>T{T}
by Lemma 6.31 (1)

by mrefl

Case: \U\ ^ 0.

T = $t>C/{T}
$>£/{T} => $>C/'{T}
|C/'| < |[/|
$>[/'{T} ^ $»T{T}
$^[/{T} =^. $>T{T}

by assumption
by i.h.(l)
by i.h.(l)
by i.h.(2)
by mtrans

Theorem 6.34 (Completeness)
IfT = $>3V.Ui{U2}
and V :: * h Ux strict
and £ :: n f$ \- r\ G *&) is a solution oj
then h T matchable

' 3*. C/j {^2}

D

Proof: direct

T =U $ > T{[/} for some [/
$»[/{T} =1» $t>T{T}
h T matchable

by Lemma 6.32(2) on V and £

by Lemma 6.33(2)
by msuccess

Theorem 6.36 (Determinacy)
7/2?:: *'h ^ € *
and £ :: \I/' h ip strict
and T :: $ h 77 G *
£/ien i/iere eimis a (unique) 7/ f<& h 77'
or not.

etf'j* j.f. ip 0 7/

D

= 77

Proof:

£' :: *' h (V> « 7? A True) strict

281

by Lemma 6.27 on £

282 B.3. BIG-STEP SEMANTICS

Case: h $ > 3\[>'. ip « n matchable

There exists an 7/ ($ h r/' 6 \I;') s.t. tp o rf — r;

Case: I/ $ > 3\P'. ip m TJ matchable

There exists no rf ($ h r;' G ty') s.t. V; ° ?/ — i]

by Theorem 6.30 oi\8',T

by Theorem 6.34 on 5', Jf

D

B.3 Big-Step Semantics

Lemma 6.37 (Context)

1. If V :: $; • h id*, ^; «5 G $, [id*. M/J:]*; [id*. M/.x\ id*]A
and £::[$] h- Af : 4
and P :: <I>; • H V G F[id<j„ M/:/;]
it/ten $; • h (id*, M/.r, V->; V/y, S) G ($, .r :i,f;yeF, A)

2. 7/I>::*;-r-td*,^;Ä€$,*;A
andV" $;-hVeF
iften $; • h (id*; ^; F/y, 5) G ($, *; y G F, A)

Proof: direct in both cases.

1. Let V';S' = id*, M/.x\ id*; V/y, idA

$, [id*, M/x]$; [id*, M/.x, id*]A h V'; 5' G $, x : A *; y G F, A by definition substitution
Let V"; (5" = (V/; (*') o (id*, V; <7) = id*, M/x, V>; V/y, S
$; • h V"; *" G $, x- : A, *; y G F, A by Corollaray 6.21

2. Let if)': 6' = id*, id*; V/y, idA

,$;Ar-^;Ä' G$,;y G F, A
Let V"; <J" = (^'; 5') o (id*, V^; <J) = id*, t, V/y, 6
$;-hf;(i"e$,*;y£F,A

by definition substitution

by Corollaray 6.21

Theorem 6.38 (Type-preservation)

1. IfV::$hP^V
and£ :: $;• hPGF
then $;-\-V <EF

D

282

APPENDIX B. OPERATIONAL SEMANTICS 283

2. IfV::$\-D^tl>;8
and£ ::$;-h£>G #;A

which extends $; ■ h (id$; •) G ($; •)

3. IfV::<5>\-(iP;ö) ~Ü^V
and T :: $; • h i/>; £ G *; A
a?jJ^::*;AI-nGF
tfjen $; • h V G F[V>]

Proof: by simultaneous induction over X>(1), 75(2), 75(3).

1. Case: I? =
$ h Arc : A. P <-> Ax : A. P

£ = $;-hAx:A.PeF

ev_Lam

by assumption

$h A/ .P^ XPL p

£ = $; • h ApL. P eF

Case: 75 =
$hP-> V

evjam

$ h (M, P) ^ (M, V)

£ ::$;•!- (M, F) G 3z : A F
£i :: [$J h M : A
£2 :: $; • h P G F[M/x]
Qi :: $; • h V G F[M/x]
Q2::$;-\-(M,V) € 3x : A. F

ev_mx

by assumption

by assumption
by inversion on £
by inversion on £

by i.h.(l) on £>i,£2

by R3 on £\ and Q\

Case: 75 =
* h <) -> <)

£ = $;-h(} GF

ev_unit

by assumption

Case: 75 =

2>i T>2

$r-P[id*,^;<J] ^V

$ h let D in P <-> V
ev_let

5 :: $; • h let £> in P G P
fi ::$;-hPG*;A
£2 ::$,*;AhPeF

ßi:
753:
754:

$;■ hid$,V>;£ : $,*;A
$;-hP[id<j,,^;<S] =P'

by assumption
by inversion on £
by inversion on £

by i.h.(2) onDi,^
by definition of 752

by definition of 752

283

284 B.3. BIG-STEP SEMANTICS

Q2::$;-hP'GF[id*,</>]
Q2 :: $; • h P' G F
Q::$;-hFGF

by Lemma 6.20(2) on £2,Pa
F closed on i>

by i.h.(l) on P4,Q2

Pi
$ h P[/ix G F. P/x] --> F

Case: 2? = ev_rec

f :: *;• h //.x G F.P <=F
E\ ::^-xeF\-PeF
P2 ::$;-hP[//,xGF.P/x] = P'
P:! ::$hP'^y
P:: $;■ hid*;- : $; •
Pt :: $; • h id*; //x G F. P/x : $; x G F
Qi ::$;-hP'GF
Q :: $; • h V G F

by assumption
by inversion on £

by definition of V\
by definition of Vy

by Lemma 6.22
by smeta on £, V

by Lemma 6.20(1) onP^Pj
by i.h.(l) on P:i, Q,

Pi P2
$ h Pi «-> Vi fhR^ F>

Ci
$h(PJ.P2 >->(V, ,F2)

£:: *;• h-(P1,P2)GF1 AF2

Si- :$; • h P G F
E-i: :$; • h P2 G F2

Qi ::*; ■ h Fi G Fi

02 ::*; • h F2 G F2

Q:: :*;■ H(F1,^2)GF1 AF2

ev_pair

by assumption
by inversion on £
by inversion on £

by i.h.(l) on Pi,5]
by i.h.(l) on P2,£2

by RA on Qi,Q2

Case: P =

Pi
$ h (V->; <J) ~ fi <-> ^

$ h case (?/>; <5) of fi <-» V
ev_case

£::$;■ h case (V>; <J) offiGF^]
£1 ::$;-h^;<J: *; A
52 ::*;Ahfi6F
Q::$;-hFGF[^]

by assumption
by inversion on £
by inversion on £

by i.h.(3) on P],<fi,£2

2. Case: P =

$;• h id*;- G $; •

ev_empty

by Lemma 6.22

284

APPENDIX B. OPERATIONAL SEMANTICS 285

V1 V2

$\-p-<->{M,V) $hP[id*,M/x;V/y] ^T/>;£
Case: V -ev_split V^CLÜV/l i~S

$\- (x:A,y £F) =P,D^> M/x,ip; V/y, 5

£:: $; ■ \- (x : A,y £ F) = P, D £ x : A,$;y £ F, A by assumption
£i: $;-hPG 3x: AP by inversion on £
£2: $,x:A;y £ F h D £ *;A by inversion on £
Qi : $; • H {M, V) £ 3x : A. F by i.h.(l) on Pi,£i
Q2 :J$]hM :A by inversion on Qi
03 :$;-h VGF[id*,M/x] by inversion on Q\

Z>3 :$;-hP[id*,M/x;V/y]=P' by definition of T>2

p4 :§hD'^Tp;6 by definition of V2

Vi: : $;• h id*;- : $; • by Lemma 6.22
V2: : $;• h id*, M/x;- G $,x : A;- by sass on Q2-,V\
V:: $; • h id*,M/x; V/y £§,x : A;y £ F by smeta on Q3,P2
nx : $; • h D' £ [id*, M/x]*; [id*, M/x] A by Lemma 6.20(2) on V,V3,£2

n2 : $; • h id*, V>; <$ £ $, [id*, M/x]*; [id*, M/x] A by i.h.(2) onPi,P4

11:: $; • h id*, M/x, ip; V/y, 6 £ $, x : A, *; y G P, A by Lemma 6.37(1) on P2, Q2, Q3

Pi P2 £3
$ H P -* Ax : A P' $ h P'[id*, M/x] -4 V $hP[v/y] <->V;<5

Case: V _ ev_App
$hye P[id*, M/x] = P M,D<-*iP; V/y, 6

£::$;• h y G P[id*, M/x] =PM,J)6*;ye P[id*, M/x], A by assumption
£\ :: <fr; • h P G Vx : A P by inversion on £
£2 :: [$] h M : i by inversion on £
£3 ::*;ye P[id*, M/x] hD£$;A by inversion on £
Qi :: $;• h Ax: A.P' £ Vx : AP by i.h.(l) onPj,£i
Q2 " $, a; : A; • h P' G P by inversion on Qi
Pi :: $; ■ h P'[id*, M/x] = P" by definition of P2

T2::$\- P" <->V by definition of P2

Pi ::$;•!- id*; •$; • by Lemma 6.22
V :: $;• h id*, M/x;- G $,x : A; • by sass on Pi, £2

Pi :: $; • h P" G P[id*,M/x] by Lemma 6.20(1) on P,Pi, Q2

U2 :: $; • \- V £ P[id*, M/x] by ih.(l) on P2, Pi
P3 :: $; • h D[V/y] = P'/*; A by definition of P3

P4 :: $ h P' -4 tp; S by definition of P3

P2 :: $; • .h id*; V/y G $;y G P[id*,M/x] by smeta onPi,P2

P3 :: $; • H P' G #; A by Lemma 6.20(2) on Pi,P3,£3

P4 :: $;• r-id*,V>;<* G $,*;A by ih.(2) onP4,P3

K :: $; • h id*, f^; V/y, 6 G $, *; y G P[id*, M/x], A by Lemma 6.37(2) on P4, P2

Pi P2 P3
$hPs \pL. P' $ h P'[id*, p'/p] ^ V $ h P[V/y] ^ fp; S

Case: P = ev_app
$ h y G P[id*, p'/p] =Pp,D^iß; V/y, *

285

286 B.3. BIG-STEP SEMANTICS

hp' = p

£::*;• h y G P[id*, pVp] = P p, P G tf; y G Pfid*, p'/p], A

£2 :: p''
£3
£4 "$;y€ F[id<j,,p7p] h P G *; A
Qi ::*;•!-A^.P'enp^.F
Q2::*,pL;-t-P'GF
^1::$;-hP'[id<j),p'/p]=P"

^2 :: * I- P" ^ V
Pi ::$;• hid*,- : $; •
P::$;-hid,i„p7p;-G$,pL;-
7e1::$;-hP"GP[id<ä„p7p]

^"^•l-KeFlidt,^]

P3 "*;■ l-ö^/y] = £>'/*; A

,P4 ::$hP'->^
P2 ::*;•!- id*; F/y G $; y G F[kU: p'/p]
Tl-i ::$;-hP'G *;A
ft4 ::*;-hid*,^;<Je*,*;A
71::$;- hid*,^;F/y,tf G $,tf;y G F[id*y/p]:A

by assumption
by inversion on £
by inversion on £
by inversion on £
by inversion on £

by i.h.(l) on X>i,£i
by inversion on Qi
by definition of P2

by definition of P2

by Lemma 6.22
by sblock on £-z,£:\,V\

by Lemma 6.20(1) on V,Fi, Q2

by ih.(l) on T-i^x
by definition of P3
by definition of P3

by smeta on Tli^Vy

by Lemma 6.20(2) on P2,^,^i
by ih.(2) 011^4,^3

by Lemma 6.37(2) on 7^.4,7?-2

Case: V =

Pi
§,pL \-D<-nl>;6

$h v pl.D^ Xp.i/r,XpL.S
ev_new

£::$;-h!/pL.i)6n/.(*;A)
5l ::f,/)VhDe$;A

72-1 " $,pL;- h id*, p/p,ip; 6 G $,pL,#;A
ft2 " *;■ hid*;-$;-
Qi ::$;■ h id*: ij)'; ä' G $, *'; A'

Q2::V/^' = ApL.(V;5)
Q3 " *'; A' = UpL. (*; A)

by assumption
by inversion on £

by i.h.(2) onX>i,£i
by Lemma 6.11 (2)

by Lemma 6.7(1) on P.i,P.2

by Lemma 6.7(1) on 7?-i,7^2

by Lemma 6.7(1) on 7^1,7^2

Case: D =

Pi
fhP4 (Vi,^2>

P2

$hP[V]/x] I/K6

$ h x = 7T] P, P «-> V; Vi/x, 5
ev_fst

£::$;• h x = TTI P, P G *; x G P, A
£l :: $; • h P G Pi A P2

£2 " $;xGPi hP G *;A

Si: :$; h(F1,^)GP1AP2

Q2: :*; h Vi G Pi

S3: :*: h id*:- : <&; •

Q4: :*; hid*;F/x :$;x6fi

Wi. :*; hP[Vi/x] = £>'

by assumption
by inversion on £
by inversion on £

by i.h.(l) on V\ ,<?i
by inversion on Q\

by Lemma 6.22
by smeta on Q3

by definition of P2

286

APPENDIX B. OPERATIONAL SEMANTICS 287

P2 ■■■ $;■ \- D' <->ip;ö by definition of P2

Vi ::$;-hZ>'G*;A by Lemma 6.20(2) on Pi, Q,i,£2

V2 ■■■ $;• hid*,^;«* G$,$;A byi.h.(2) on P1:P2

P:: $;■ h id$, ^; Vi/x, £ G $,#;xGPi,A by Lemma 6.37(2) on Q2,V2

Ü! V2

$ h P <-> (Vi, V2) $ h P[F2/x] ^ </>' S'
v-> ao c • x--' ev_snd

$ h x = 7T2 P, D -> V'; ^2/x, (5'

5 :: $; • h x = TT2 P, fl G *; x G P2, A by assumption
f 1 :: $; • h P G Pi A P2 by inversion on £
52 :: $;xGP2 hfl G *; A by inversion on £
Q1::$;-h(V1,F2}GP1AP2 by i.h.(l) on T>i,£i
Q2 :: $; • h F2 G P2 by inversion on Qi
Q3 ::$;■ h id$; • : $; ■ by Lemma 6.22
Q4 ::$;-h-id<j,;F/x:$;xGP2 by smeta on Q3
Pi ::$;-hjD[V2/x] = £>' by definition of T>2

P2 ::$;-hfl'H^;i by definition of T>2

Pi ::$;.hö'6$;A by Lemma 6.20(2) on Pi, QA,£2

P2 :: $;• hid$,^;<5 G $, #; A by i.h.(2) on^,^
P:: $;• h id$,^; Vfc/x, <J G $,*;xGP2,A by Lemma 6.37(2) on Q2,V2

PI

$hfl[f;^F
3. Gase: P = ev_ye s

$ h (V>; <5) ~ (fi, (*' > tl>' ^ P)) ^ V

There exists a ^" s.t. (ip'- idA) o (V>"; S) = (ip; 5)
P::$;-h-V;(5:*;A
5::*iAhfl,($'>^4?) GP

52 :
Si
Pi
Pi

';[^']AI-^';idA :;A
*'; [tp']A h P G P[V/]

:$;-hP[fii]GFM[f]
:*;■!- P[^"; 5] G P[^]

P :: $; • h V G P[^]

by side condition
by assumption
by assumption

by inversion on £
by inversion on £

by type correctness of side condition
by Lemma 6.20(1) on £2, Q\

by Definition of tp"
by i.h.(l) on Vu V\

Case: V =

V
$h(V>;<5) ~JW 7

$ h (?/>; 5) ~ (ft, (* > V>' ■->• P)) -+ 7

There is no ?/>" s.t. (1//; idA) o «; 5) = (ip; Ö)
P::$;-h^;5:^;A
5 ::*;Ar-fi,(*>^'^P) GP

■ev_no

by side condition
by assumption
by assumption

287

288 B.3. BIG-STEP SEMANTICS

£i :: $;AhfleF
ft :: $; • h F e Fty;]

by inversion on £
by i.h.(3) on T>i, T, £\

D

288

1 Appendix C

*

Realizability

Theorem 7.3 (Local type preservation for small-step semantics)

IfV::\-S€F
and £::S=^S'
then h S" G F.

Proof: by case analysis on £

Case: £ = trlet :: $; C > let L> in P => $; C, let • in P > D

£>::l-($;Ct>letL>inP) eF by assumption
^-fhCefi^F by inversion on V
V2 :: #; ■ h let DinPGfi by inversion on V
f!::f;-hi)e$;A by inversion on £>2
^2 ::$,*;AhPeFi by inversion on T>2
V :: $ h C, let . in P G (*; A) => F by tclet onX>i,^2
Q::h ($; C, let • in P > £>) eF by tsdec on?,^

Case: £ = trletC :: $; C, let • in P> (^;<J) ==> $; C > P[id$,^; 6}

V ::h ($; C, let • in P > (V>; 5)) G F by assumption

u £>i :: $ h C, let • in P G (*; A) =>• F by inversion on V
T>2 :: $;• h id^,, -0; r5 G $,*;A by inversion on V
^"i :: $ h (7 G Fi =*• F by inversion on T)\

• ■F2 ::$,*;AhPeFi by inversion on T>\
P :: $;• h Ppd*,^;«*] G Fi [id<3>, ?/>] by Lemma 6.20(1) on X>2, T2

7>::$;-r-P[id*,^;<$] G Fi since $; • h F formula
Q::h($;C>P[id$, </>;£]) GF by tsprg on T\,V

Case: £ = trpair :: $; C> (Pi,P2) =>• $; C, (»,P2) > Pi

289

290

V::\-($;C>{P1,P2))eF
Pi :: $ h C G P A F2 =^ F
V2::$;-\-(Pi,P2)eFlAF2

Ti :: $; • h Pi G Fi

P::$r-C>,P2) G P ^ F
Q::\-(*;C,(;P2)>P1)eF

by assumption
by inversion on V
by inversion on V

by inversion on V2

by inversion on V2

by tcpair on V\,T2

by tsprg on V, T\

Case: £ = trpairC :: $; C, (•, P2) > V $;Co(F.P2)

D::h(*;C,(.,P2)>F)eF
Pi ::$hC,(.,P2)eFj ^F
P2 :: $;-l-VG Fi
^! :: * h C € P A F2 => F

P2 - $; • K P2 e F2

P::$;-h(F,P2) G P A F2

Q::\-{$;C>(V,P2))eF

by assumption
by inversion on P
by inversion on I?

by inversion on T>\

by inversion on T>\

by RA on P2,P2

by tsprg on Fi, P

Case: £ = trmix :: $; C > (V], P2) $;C.(V]:.)>P2

D::h($;C>(l/,,P2))eF
2?! :: $ h C G P A F2 => F
V2::$;-h(Vi,P2)£F]AF2

Ty v. $; • h Vi G Fi

F2 " *; • H P2 G F2

Pi^hC,^,.) £F2=> F

Q::I-($;C,<V,,.)>P2)GF

by assumption
by inversion on I?
by inversion on I?

by inversion on T>2

by inversion on P2

by tcmix on V\,T\
by tsprg on P,F2

Case: 5 = trmixC :: $;C,(Vi,«) > V $;C>(VUV)

V::\-($;C,(Vu*)>V)eF
Vi ::^\-C,{Vl,m)£F2=>F
V2 :: $; ■ h V € F2

Fl :: $ h C G Fx A F2 =» F

F2 :: *; • I" Vi G Fi
P::*;.|-<Vi,y) G F A F2

Q::r-($,C>(Vi,y))eF

by assumption
by inversion on P
by inversion on P

by inversion on T>\
by inversion on T>\

by RVon F2,P2

by tsprg on T\, V

Case: £ = trfst :: $; C > x G Fi = TTI P P $:C,xG F =71-] ;Dt>P

V ::h ($; C t> x G Fi = TTI P, F») G F
2>i ::$hCG (*;xGFi,A) => F

by assumption
by inversion on P

290

APPENDIX C. REALIZABILITY 291

V2 - $; ■ I- x G Fi = TTI P, D G *; x G Fx, A
Pl :: $; • h P G Pi A P2

P :: $ h C, (x G Pi = TTI •, P) G Pi A P2 => P
Q ::H ($; C, (x G Pi = TTI •, Z>) > P) G F

by inversion on V
by inversion on P2

by inversion on T>2

by tcfst on Pi,P2

by tsdec on V, T\

Case: £ = trfstC :: $; C, x G Pi = TTI •, P > (Vi, F2) *;C,(.;Vi/X,.)>Z?[y1/x]

P::F($;C,xGPi = TTI «,P > (Vi, V2)) G P
Di :: $ h C, x G Pi = 7T! •, P G Pi A P2 => P
Ü2::$;-h(Fi,F2) G Pi A P2

Pi ::$hCG(*;xGPi,A)^P
P2 :: ^;xGPi Y- D : *;A
£1 :: $; • h Fi G Pi
Pi::#hC,(.;Vi/x,.)G(*;A)^P
V2::*\-\-D[V1/x] :*;A
Q ::h ($; C, (•; Vi/x, .) > P[Vi/x]) G P

by assumption
by inversion on V
by inversion on V

by inversion on T>\
by inversion on V\
by inversion on P2

by tcmeta on Pi, Q\
by Lemma 6.20 (2) on P2

by tsdec on Pi,P2

Case: £ = trsnd :: $; C > x G P2 = 7r2 P, P $; C, x G P2 = 7T2 •, D > P

P::h ($;Ci>xGP2 = 7r2P,P) GP
Üi::$hCG (*;xGP2,A) => P

Z>2 " *5 • H x G P2 = 7T2 P, P G *; x G P2, A
Pi :: $; • F- P G Pi A P2

P2 :: $;xG P2 h P G #; A
P :: $ h C, (x G P2 = TT2 •, P) G Pi A P2 => P
Q ::h ($; C, (x G P2 = TT2 ., P) > P) G P

by assumption
by inversion on V
by inversion on V

by inversion on P2

by inversion on P2

by tcsnd on X>i,P2

by tsdec on P, Pi

Case: £ = trsndC:: $;C,xGP2 = 7r2«,P» (Vi,V2) =» $; C, (•; V2/x, •) t> P[V2/x]

P::h ($;C,xeF2

Pi
V2

Pi
P2

7T2.,P>(Fl,F2})GP
$ h C,x G P2 = 7T2 »,P G Pi A P2 => P
^;-^(^l,^2)GPiAP2

$hCG (^;xGP2,A) =>P
$;XGP2 hP : *;A
*; • h V2 G P2

Pi :: $ h C, (•; V2/x, •) G (*; A) => F
P2 :: $; • h P[F2/x] :*;A
Q ::h ($; C, (.; F2/x, .) > P[V2/x]) G P

by assumption
by inversion on V
by inversion on V

by inversion on Pi
by inversion on Pi
by inversion on P2

by tcmeta on Pi, Q\
by Lemma 6.20 (2) on P2

by tsdec on Pi,P2

Case: £ = trinx :: $; C> (M,P) =► $;C,(M,»)>P

291

292

V::h ($;C>(M,P)) GF
Vx ::$hC e3x:A.Fi => F
V2 ::$;•!- (M,P) G 3x : A Fj
Ti :: [$] h M : A
f2::$;-hPeFi[id^M/.T]
P::*hC,(M,i> G F [id*, M/a
S::h($;C,(M1.)>P)GF

by assumption
by inversion on X>
by inversion on V

by inversion on "D2

by inversion on 2>2

by tcinx on £>i,Fi
by tsprg on P, F2

Case: £ = trinxC :: $; C, (M, •) > F =

V-.-.Y- ($;C,(M,»)>V) eF
2?i::$hC, (M, •) G F [id*, M/x]
£>2::$;-hFGF [id*, M/a;]
Fi ::*hCG3s: AFi =* F
F2 :: [$] hM:i
P::$;-r- (M,V) G3x: AF
Q::h($;C>(M,V)) eF

$;C>(M,V)

F
by assumption

by inversion on V
by inversion on V

by inversion on 2?2

by inversion on 2?2

by R3 on ^2,^2
by tsprg on T\, V

Case: 5 = trsplit :: $; C t> (a: : Ay G F) = P,L> => $: C, (.r : Ay G F) = •, £> > P

V:-y ($;C>(i:AyeFl) =p,D)eF
Di::$hCe (x:i,*;y GFi,A)=»F
D2 :: $;• h «a: : A,y G F) = P,D) G a; : A*;y G F, A
Fi ::$;-KPG3X: AP
F2 :: $, x : A; y G F h D G *; A
V :: «> h C, ((.x : A, y G F) = •, P) G 3a; : A F, =» F
Q ::r- (*; C, {(x : Ay e F) = ., D) > F) G F

by assumption
by inversion on I?
by inversion on T>

by inversion on P2

by inversion on P2

by tcsplit on V\, F2

by tsprg on P, T\

Case: £ = trsplitC ::
P[id*,M/x;F/y]

$; C, (a; : A y G F) = ., D > (M. V)

V-.-.V- ($]C,(x :A,yeF) = ;D>(M,V)) eF
Vx ::*r-C,((i:AjeF|) = •,£>) G 3.x : A F =
2?2 ::*;•!- (M, V) G 3a: : A F
f! :: $ h C G (a; : A^; y G F, A) =» F
F2 :: $, x : A y G Fj h P G *; A
Gx :-.m\-M:A
G2 ::$;-\-V eF[id*,M/x]
Vx :• $ r- C, (M/x, •; V/y, •) G [id*, M/xp>; A) =4
P2 :: $;• hD[id*,M/i;F/y] G [id*, M/x](*; A)
h (*; C, (M/x, .; F/y, •) o P[id*, M/x; V/y}) G F

$;C,(M/a:,.;F/y,.) >

by assumption
by inversion on T>
by inversion on V

by inversion on T>\
by inversion on T>\
by inversion on P2

by inversion on P2

by tcsubst on Fj, G\, £/2

by Lemma 6.20(2) on F2

by tsdec on Pi,P2

Case: £ = trsubst:: $;C, (M/x,»; F/y, •)»(</>; <5) => $;C > {M/x,ijr,V/y,S)

292

APPENDIX C. REALIZABILITY 293

P::h ($;C, (M/x,»; F/y, •)>(?/>; £)) GF by assumption
Pi •:: $ \~ C, (M/x, •; V/y, •) G (*'; A') =*• F by inversion on 7?
P2 :: $;• h id*,?/>;5 G $,*';A' by inversion on P
Fi :: *'; A' = [id*, M/x](*; A) by inversion on Vx

F2 :: $ h C G (x : A, *; y G Fi, A) => F by inversion on Vx

T3 :: m h M : A by inversion on V1

F4 :: $; • h F G Fi [id*, M/x] by inversion on Pi
P:: $;• h id*, M/x,?/'; V/y, 6 E$,x : A,V;y e Fi,A by Lemma 6.37(1) on^,^,^
Q :: I- ($; C > M/x, V>; 7/y, 5) G F by tssub on F2, V

Case: £ = trrec :: $; C > /ix G F. P => $; C > P\pas. G F. P/x]

P ::h ($; C > /JX G Fi. P) G F by assumption
Pi :: $ h C G Fi => F by inversion on P
P2 :: $; • H /ux G Fi. P G Fi by inversion on P
Fi :: $; x G Fi h P G Fi by inversion on Rctx
V :: $; • h P^x G Fi. P/x] G Fa by Lemma 6.20(1) on Fi
Q::h($;C>P[/ixGFi.P/x]) GF by tsprg on Vx,V

Case: £ = trempty :: $; C > • =>■ <&;C>-;-

P ::h ($; C > •) G F by assumption
Pi ::' $ h C G (•; •) => F by inversion on P
P2 :: «£; • h • G •; • by inversion on P
V :: $;• hid*;- : $; • by Lemma 6.22
Q ::h ($;C>-;-) G •; • by tssub on Pi, P

Case: £ = trApp :: $;C>y G Fi[id*,M/x] =P M,D => $;C,y G Fi[id*,M/x] = . M,D>P

V ::h ($; C 0 y G Fi[id*, M/x] = P M, D) G F by assumption
Pi :: $ h C G (*; y G Fi[id*, M/x], A) => F by inversion on P
P2 :: $; • h y G Fi [id*, M/x] = P M, P G *; y G Fi [id*, M/x], A by inversion on P
Fi :: $; ■ h P G Vx : A. Fi by inversion on P2

f2 :: [$1 H M : i by inversion on P2

F3 :: $; y G Fi [id*, M/x] h P G *; A by inversion on P2

P :: $ h C, (y G Fi [id*, M/x] = • M, P) G Vx : A F: => F by tcApp on Pi, F2, F3

Q ::h ($; C, (y G Fi [id*, M/x] = »M,D)>P)GF by tsprg on V, Tx

Case: 5 = trAppC :: $; C,y G F^id^M/x] = • M,P > Ax : A. P =»
$;C,y£ Fi[id*, M/x] = •,£>> P[id*, M/x]

P ::h ($; C, y G Fx [id*, M/x] = • M, D t> Ax : A. P) G F by assumption
Pi :: $ h C, (y G Fi [id*, M/x] = • M, P) G Vx : A. Fx =>• F by inversion on P

293

294

P2 :: *; -\-Ax:A.Pe Va; : A. F
fi::$hCe (*; y G F[id*, M/s], A) =» F
F2 :: [*1 I- M : ^4
F3 - *; y € F[id*, M/x] h P G *; A
£1 :: $,.T:A:- hPG F
Ö2 " *; ■ f- P[id*, M/rc] G F [id*, M/x]
P::$hC,y6Fi[id*, M/x] = .,Def, [id*, M/x] => F
Q ::h ($; CjGF, [id*, M/.T] = •,£>> P[id*, M/.x]) G F

by inversion on P
by inversion on Pi
by inversion on T>\
by inversion on T>\
by inversion on P2

by Lemma 6.20(1) on Q\
by tcassign on T\, F3

by tsprg on P, Q2

Case: f = trapp :: $; C t> x G P[id*, p'/p] = P p',D ==> $; C, x e F] [id*, p'/p] = •//,£>> P

P::h (*;C>xGF,[id*,p'/p] = Pp',P) GF
Vi ::* h Ce (*;xGF [id*, p'/p], A) => F

©2
Fi
F2

F3

F4

P p', P G*;xGF[id*, p'/p], A *;-l-xeFi [id*, p'/p]
$;-hPGlIpL.p
p'L G$
[<]>] h p' = p
$;x£ Ft[id*, p'/p] h P G *; A

P::$hC,(x£ F [id*, p'/p] = • p', P) G EL/A P
Q ::h ($; C, (x G F [id*, p'/p] = • p', P) t> P) G F

F

by assumption
by inversion on P
by inversion on P

by inversion on P2
by inversion on P2
by inversion on P2
by inversion on P2

by tcapp on P2, F3, T\
by tsprg on P, T\

Case: £ = trappC
$; C, (x G P [id*, p'/p] =

$; C, x G F[id*, p'/p] = • p', P > XpL. P
,P)»P[id*,p'/p]

P ::h ($; C,x G F [id*, p'/p] = »pl,D> \pL. P) G F
Pi::$l-C,xefi [id*, p'/p] = • p',D £ IIpF P =» F
V2 ::*;•!- ApL.PGlIpFp
Tx :: $ I- C G (*;x G F [id*, p'/p], A) =}► F
F2::[$]r-p = p'
F3 :: $; x G F [id*, p'/p] hö6*;A
S^^pVhPGF
G2 ::$;• h P[id*, p'/p] G F[id*, p'/p]
P :: * h C, (x G F [id*, p'/p] = •,£>)€ F [id*, p'/p] => F
Q ::\- (*;C,(x G F [id*, p'/p] = ., P) > P[id*,p'/p]) G F

by assumption
by inversion on P
by inversion on P

by inversion on T>\
by inversion on Pi
by inversion on T>\
by inversion on P2

by Lemma 6.20(1) on Q\
by tcassign on Fi,F3

by tsprg on P, Q2

Case: £ = trassign :: $; C, x G F = •, P > V => $; C, (•; F/x, •) > P[F/x]

P ::r- ($; C, x G F = •, P > V) G F
Pi ::$hC,(x€Fi = •, P) G F =>
P2 " $; • h V G F
Fi ::$hCG(*;xGF,A)^F
F2 :: $;xGFi h P : *;A
Ö :: *; • H P[^/x] : $;A

by assumption
by inversion on P
by inversion on P

by inversion on Pi
by inversion on P2

by Lemma 6.20(2) on F2

294

APPENDIX C. REALIZABILITY 295

Vr.QhC, (•; V/x, •) G (*; A) => F
Q ::h ($; C, (.; F/x,.) > D[V/x]) G F

by tcmeta on T\, T>2

by tsdec on V, Q

Case: £ = trmeta :: $; C, (•; V/x, •) > (^; 5) =

0::h($;C,(»;Wx,.)>(V;*))GF
Vx :: $ h C, (•; F/x,.) G (*; A) => F
r>2 - $;• l~id$, ?/>;<* G $, *; A
.Fi ::$hCe(*;xeFi,A)=^F
F2 :: $; • h 7 G Fx

V v. $;■ hid$,^;F/x,^ G $,*;xGFi,A
Q::l-($;C>(^;F/x,tf) G *;x G Fl5 A) G F

*;C>(^;VyM)

by assumption
by inversion on V
by inversion on V

by inversion on V\
by inversion on T>\

by Lemma 6.37(2) on V2,T2

by tssub on Fi,V

Case: 5 = trnew :: $; C > zy pL. £> =► $;/oL; C, (A/)L. (•;•)) > £>

£>::h ($;C>i/pL.D) GF
PI :: $ h C G (*; A) => F

F2 :: #;A = IL/.(*';A')
V::^,pL\-C,{\pL »)) G*';A'^>F
ö::h($/;C,(AA(«;»))>ö)€i?

by assumption
by inversion on V
by inversion on D

by inversion on V2

by inversion on T>2

by tcnew on T>\
by tsdec on V, T\

Case: £ = trnewC :: $, pL; C, (Ap »))>^;<* $;C^ApL.(^;<5)

P::h($,pL;C,(ApL.(.;.))>^5)GF
Pi::$,pLh-C,(ApL.(.;.))G(*;A)^F
V2 :: $,/;• h id*, p/p,il>; 6 : $,pL,tf; A
Fi ::$H(7GnpL.(vE';A) => F
£ :: $ hid$;- G $; •
öi ::$;-r-id#,^'; <*':$,#'; A'
ö2::V'';^ = ApL.(V;«5)
ö3::*';A' = npL.(*;A)

?2::h($;C>f;(S')€F
Q::F-($;C>ApL.(^;^)) GF

by assumption
by inversion on V
by inversion on V

by inversion on T>\
by Lemma 6.22

by Lemma 6.7(1)
by Lemma 6.7(1)
by Lemma 6.7(1)

by using £3 on V\
by tssub on T\,V\
by using Q2 on V2

Case: £ = trcase :: $; C t> case (■*/>; <5) of 0

P ::h ($; C t> case (V>; (5) of Q) G F

I>2 " *; ■ I" case (x/>; S) of fi G Pi [</>]

$;C>fo/>;<S) ~£7

by assumption
by inversion on V
by inversion on V

295

296

£2 :: *;AhfiGfi
Q::h($;C>(!/);^)~fi)6F

by inversion on V2

by inversion on V2

by tscase on V2,£i,£2

Case: 5 = tryes ::$;C> {ip; 6) ~ (fi, (*' > ij/ .-> P)) =

There exists a V" s.t. (^'; idA) o «; <S) = (V>; <J)
P ::h ($; C > (^ <$) ~ fi, (*' >^'HP))GF

PI ::$hCeFi[V;] =4>F
P2 - $;•!-V;^:*;A
V3 :: *; Ahf!, (*' > $ ^ P) G P
£i :: *';[^']Ah V/;idA : *;A
£2 :: #; A h fi G P
£3::1'';[V/]AhPGP [</>']
Ti ::$;-hV/';^:*';[^']A

Q::l-($;C>P[f;i])eF

*;C>P[V/';<S]

by side condition
by assumption

by inversion on V
by inversion on V
by inversion on V

by inversion on D3
by inversion on "D.j
by inversion on X>s

by type correctness of side condition
by Lemma 6.20(1) on £3, Pi

by Definition of ij>"
by tsprg on V\, V

Case: £ = trno ::$;C> (i/>; 5) ~ (fi, (*' > V>' H-> P))

P ::h ($; C > (^; <J) ~ fi. (*' oi//H?))eF
I?! ::$hCGFi[V>] =» P
P2 :: $;-h^;£ : *;A
P3 ::*;Ah fi, (*' > </>' H-> P) G P
P::*;Ah ('</>; <5) ~ fi G Pi
Q::h ($; C > (V->; <$) ~ fi) G P

$;CD>(V;;<5) ~fi

by assumption
by inversion on P
by inversion on P
by inversion on P

by inversion on P3

by tscase on V\ ,V2,V

D

Theorem 7.4 (Type preservation for small-step semantics)

IfV-.-.S =^ S'
and £ ::h 5 G P
iAen h 5' G P.

Proof: by induction on P:

Case: P = trid

£ ::h S eF by assumption

296

APPENDIX C. REALIZABILITY 297

Si ==> 52
Case: V =

Si

v2
s2 =^ s3

trstep

£2:
£3:

^S2eF
\-S3eF

by assumption
by Lemma 7.3 on £\,T>\

by i.h. on V2,£2

D

Theorem 7.9 (Termination) We consider the evaluation of a junction of type
Vxi : A\. ... \/xn : An. 3y\ : A[. ... 3ym : A'm. T applied to arguments Mi,..., Mn m a pa-
rameter context <3?. T/ie termination order is O and all procedures (used as lemmas) terminate.

1. If S = <&; C > P and P is not a value

thenS =k> $;C>V
or the computation terminates prematurely.

2. IfS = $;C> (V>;S) ~ Q
then S =U $;C>V
or the computation terminates prematurely.

Proof: by induction lexicographically on 'order (0,Mi ... Mn)' and (P(2) and fi(3)).

1. Case: P = let D in P'

D = v px
x. ... v pLq. by definition
yi=x[P'/x]M{,
y2 = yo M'2

ym = Yn M'm,
(sijm+i) = ym,

\xpiym+p) = Ym+p-1

Case: x recursion variable

m = n
order (O, M[... M'n) <o order (O, Mi... Mn)
P = Aari :4i. ... Axn : A„.P"
$; C > let £> in P'

=^ §;C>P"[M[/xu...,MUxn]
=^ §-c>v

or the computation terminates prematurely

Case: x lemma variable

by inversion
by Condition 7.8

by n inversion steps

by n applications of trApp

by i.h. (2)

297

298

$; C > let D in P'

or the computation terminates prematurely by assumption

Case: P=(P1,P2)

$;C>{PuP2)
=> <&; C, (•, P2) > Pi

=^> *;C,<.,P2>>Vi
=> *;C>(Vi,JP2)
=> $;C,(Vi,.)>P;
=^ *;C,(Vi,.>r>V2

=> $;C>(Vi,V2)
or the computation terminates prematurely

Case: P = (Vi,P2)

*;C><V1,P2)
==> $;C,(Vi,.)>P2

=^ *;C,(Vi,«>>y2

or the computation terminates prematurely

Case: P = (M, P)

$;Ct>(M,P)
=> $;C, (M,.)>P

=^ *; C, (Af, •) > 7

or the computation terminates prematurely

Case: P = /ix e F. P'

$; C > //x € F. P'
=» *; C > P[/ix G P. P'/x]

=^» $;C>V
or the computation terminates prematurely

Case: P = case (i/>; 6) of ft

$;C>case (V>; 5) of ft
=> $; C > (V>; <5) ~ n

or the computation terminates prematurely

2. Case: ft, (*' > ip' H> P)) and there exists a ip" s.t. {if)'; idA) o (<//'; (5)

$; C > (?/>; 5) ~ (ft, (*' > </>' •-> P))
=> $; C > P[il>"; 6}

or the computation terminates prematurely

(il>;6)

by trpair
by i.h.(l)
by trpairC

by trmix

by i.h.(l)
by trmixC

by trmix
by i.h.(l)
by trmixC

by trinx
by i.h.(l)
by trinxC

by trrec
by i.h.(l)

by trcase
by i.h.(2)

by tryes
by i.h.(l)

298

APPENDIX C. REALIZABILITY 299

Case: Ü, (*' >ij/i-> P)) and there is no V" s.t. (V>'; idA) o (V>"; 8) = (V>; ö)

$;C>(^;5)~(f2,(*'>^'^P))
=4> $; C > (V>; <J) ~ fi by trno

=^> $;C>F byi.h.(2)
or the computation terminates prematurely

D

Lemma 7.18 (Liveness of constant covers)
7/I>::*i;a;:nrx.5x;*2l-S»a; cover
and * = #!,£ : HTV^, \J/2

arcd * h raise (Tx, UTC. Bc) = (*c t> nrx. B'c)
and T :: $; • h V>; <5 e *, *c; A
andE(c) = Iirc.JBc

and V e unify (UTX. Bx « HIV i?£, ^ ~ ^rx. c (<3>c rx))
i/ierc i/iere exists a (\I>o > V'o) G ^ «^^ a V'l
s.t. $)- ipi e *o
and *o l~ V'o G *
and $ h)/)o ° ^i = V'l* G ^

Proof: by induction on V:

Case: D = ccempty
*i;ar:nrx.Bx;*2 l~ • » -cover

Impossible case -(c) is undefined by Q

*i; x : Iirx. ßx; *2 I- S » u; cover
Case: 2? = —— ccunify

i;a: : IiTx.Bx^2 h S,d : Iird. £d > w, ('> V>m|*) cover

Case: c ^ d

there exists a (\I>o > V'o) £w and a V'l, s.t.

#0 I- V'O G *
$ I- V'o ° V'l = V>k G * by i.h. on X>i
(^ooV'o) Gw, (*'>Vm|*) trivial

Case: c = d

ty' \-ipm = mgu (Iirx. £x « nrx. ££, £ « Arx. c (*c rx)) £ *, *c by side condition
there exists Vi, st. $ h Vm ° V'l = V' G $, *c Vm is mgu
V\ :: $ h V'l G *' by well-typedness of V>m ° V'l
7>2 :: *' ^m £ *, *c by well-typedness of VVn ° V'l
P3 :: *' h Vmlvp G * by Lemma 7.14
(*'>V>m|*) Gw, (#'>V>m|*) trivial
$ h ^ml* ° V'l = V'l* G * by Lemma 7.15

299

300

Case: V =
*i; x : UYX. Bx\ \I>2 I- S » w cover

*i;x : nr;r.5a:;*2 H S,c: Iirc.ßc > UJ cover

Case: c 7^ d

there exists a (^0 > V;o) £ w and a ij)i, s.t.

$ h i/>o ° V;l = V-'k G *

ccskip

by i.h. on T>\

Case: c = d

nrr. Bx « nrr. ß£,a; « AIY (c (tfc rT)) do not unify
mV Bx « mV 5^, a: « Ar.r. (c (*c rx)) unifies
Impossible case

by assumption
by assumption

D

Lemma 7.19 (Liveness of local parameter covers)
IfV::^i;x: UTX. Bx\ *2 r- T » u cover
and * = $1, a; : IHV Bx, *2

and * h raise (rx, nrp. £p) = (*p t> IHV B'p)
and T :: $; • h V>; <$ G *, *p; A
anöfr(p) = nrp.#p

and V G unify (UTX. Bx « IIIV 5p, a; sa AIYp (*p rx))
then there exists a (vf-'o > V;o) G a; and a ?/>i
s.i. $ h Vi G *o
and *o h i/)0 £ *
and $ H i/)o o ^ = ^|q, e \I>

Proof: by induction on V:

Case: Ü =
*i; x : UTX. Bx\ *2 I" • » • cover

ccempty

Impossible case ■(p) is undefined by £

Case: V =
$i;x : UTX. Bx; *2 h T » w cover

*i; x : nrT. Bx; *2 H T, d : IHY Brf » w, (*' > ?/>m|*) cover

Case: c / d

300

ccunify

APPENDIX C. REALIZABILITY 301

there exists a (*o > V'o) G w and a ipi, s.t.
, • h^e0

$0 1- ^o G *

$ h ^o °^l = V'k G * by i.h. on V\

*

Case: p = d

trivial

* *' h ii>m = mgu (nrx. BX « nrx. #;, * « Arx. c (*p ra -)) G ty, typ by side condition
there exists ?/>i, st. $h^roo^ G \P, V&p ipm is mgu
Pi :: $ \-ipi e W by well-typedness of ipm o ^
V2::*'\-il>me*,% by well-typedness of ipm o ^
7>3::*'H^m|*e* by Lemma 7.14
(*'>^mk) ew,($'>^m|*) trivial
*|-^m|*o^1=^|^G* by Lemma 7.15

©1
vfi; x : nrx. 5X; *2 t~ T > w cover

Case- T> — ' rrHrin
*i; rc : Iirx. £x; *2 H I\p : nrp. ßp > w cover

Case: p ^ d

there exists a (^>0 » ^o) G u> and a ^i, s.t.
$ 1- V>i € *o
*0 ^0 G *

$ h Vo ° V'l = ^I* G * by i.h. on V\

Case: p = d

nrx. BX « nrx. B'P, X « Arx. (p ($p rx)) do not unify by assumption
nrx. BX « nrx. ßp, z « Arx. (p (*p rx)) unifies by assumption
Impossible case

Lemma 7.20 (Liveness of global parameter covers)

D

* 7/2)::*1;a::nrx.Ba:;*2;*3l-/o>w cower
and * = *i,x : nrx.Jßx,*2
and * h raise (rx, nrr By) = (yy > nrx. s^)

* and f ::$h^ef,f3, ^
and p(y) = UTy.By
and^e unify (UTX.BX « nrx.5;,a; « Arx.p (*y Tx))
then there exists a (\I/o >i>o) 6w and a V>i
s.i. f h ^ e *o
and *o ^o G *
and <£ h ^0 ° tpi = ^|* G *

301

302

Proof: by induction on V:

Case: V =
*i; x : nrT. Bx; \&2; *3 l~ • > • cover

Impossible case

ccempty

•(y) is undefined by Q

Case: V

2>i
*i; x : nrr. ßa.; *2; *3 ^ P » w cover

*1;.T;:nr,..JB.r;^2;*3 I-p, d : Iirrf. Brf » w, (*'>^n,|*) cover

Case: y 7^ d

there exists a (^0 > V;o) S w and a V;i, s.t.

*o *r tl>0 G *

$ h ?/>() o,0l = V^k € *

ccunify

by i.h. on "D]
trivial

Case: y = d

$' h f/>m = mgu (nrr. Bx « nr3.. ß' a: « AIY c (*„ r.r)) € *, #3, ^ by side cond.

Case: X»

there exists ip1, st. $ h ipm ° V;i = V; € ^ *3- *y
Pi :: $ h Vi € *'

P3::*'l-^ro|*G*

i'i;x : nrr. £x; $2 r- P » a; cover

*i; .7: : IHV 5T; *2 I- P, d : IIIY 5d > LO cover

Case: y^d

there exists a (\I>o » V;o) £ ^ and a V-'i, s.t.

ipm is mgu
by well-typedness of ijjm o ij)\
by well-typedness of ij>m o ^

by Lemma 7.14
trivial

by Lemma 7.15

ccskip

by i.h. on V>\

Case: y = d

UFX.BX « nrx. B'y, x « AIV (y (^ IV)) do not unify
IIIV. Bx « IIIV. 5;, a: « Arx. (y (tf y IV)) unifies
Impossible case

by assumption
by assumption

302

APPENDIX C. REALIZABILITY 303

D

Lemma 7.20 (Liveness of schematic coverage)
IfV::^i;x:nrx.Bx;^2hS^u
and * = $>i,x : UTX.BX,^2

J and T :: $ h ip G #
anrf V(a;) = Arx.# Mi..Mn

and pL E $
and p(g) = nr9.i?5

and £ :: 5(1) = SOME Cx. BLOCK C2

then there exists a (^>Q O IJJQ) G OJ and a il>\
s.t. $ h Vi G *o
and *o I- ^o G *
and $ h ^o; °V,i = ^ £ ^

Proof: by induction on V

Case: V = scempty
*i; x : LTX. Bx; *2 l~ • » • cover

Impossible case .(L) is undefined by £

V1

V2

V4

*i; x : LUV 5X; *2 h 5 > wi cover
*3 I" o- G Ci
^1,x:UTx.Bx,^2,^zhp=[a}C2

^1;x:UTx.Bx;^2;^3,pL' h p > w2 cover
Case: 2? = ——— scnext

Vi;x: nrx. £x; *2 H 5, (SOME Ci. BLOCK C2)
L' » u;i,w2 cover

Case: L = V

* h raise (rx, nrs. Bg) = (Vg t> nrx. 5£) by definition
tyg = z\ : ^4i,..., 2n : An by definition
01 :: *, *5 h Arx. 9 (*9 Tx) G nrx. ß; by Lemma 7.11
£i :: $ h cr = </>, Ar:E.Mi/zi,...Ara;.Mn/zri G *, *9 by Def. Substitution
Pi :: $ 1- \Tx.g (*«, rx)[a] = X[a]Tx. g Mx...Mn by Lemma 6.7(1)
$ h Arx.# (*ff Tx)[cr] = \[ip]Tx.g Mi...Mn Tx does not depend on *s

h Arx. </ (*5 rx)[cr] G UTX. B'g[a] by LF substitution lemma on Q\
§h \Tx.g (yg Tx)[a] G nrx. Bx[a] by Definition of substitution
V2 :: $ h nrx. 5^[or] = nrx. Bx[tr] by Lemma 2.7
a G unify (x « Arx. p (*9 rx), Iirx. £x « nrx. B£) by Definition 7.10 on Pi, P2

there exists a (\I/o > V'o) € w2 and a ^i, s.t.
f h ^ g $0

$ h ?/>0 ° fa = ip G * by Lemma 7.20
(*o > ^o) G wi, w2 trivial

303

304

Case: L ^ V

■ : there exists a (\I/o > V;o) G <^i and a ?/;i;

$ f- ipi e *o
*o i- ^o G *
$ h V-,u;°V'i = V; G *
(*0 £> V^o) 6wi,w2

s.t.

by i.h. on Z>i
trivial

D

Lemma 7.22 (Liveness of single coverage)
If V :: ty \- u cover
and £ :: <I> h tp G *

£/ien iÄere eaxsts a (\I/o » V;o) £w and a tj>[

s.t. $ \- i}>i G *o

and *o l~ V;o G *
and $ h f/'o ° V;i = V; ^ *

Proof: by case analysis of V:

V =
* = *I,.T :nrT.ßr,*2

Z>2

©3
v4

^>i:x : nrT. £T; ty-2 h TT » W| cover
<J>i; x : nrr. By. *2 l~ S » w2 cover
*!; X : nrT. B,r; *2 ^ <5 » w3 cover

\I/ hwi,W2,w.3 cover
single

Let ${x) = \[^}Tx.hMl...Mn by Theorem 2.6 and V\

Case: h = c

S(c) = UTe.Bc

* h raise (r.T, nrc. Bc) = (*c > IHV 5C'.)
<3>c = ^i : Ai,...,zn : An

g, ::^^'c\- XTx.c(i'crx) eUTx.B'c

£i :: $\r<T = il>,\rT.Ml/zi,...\rx.Mn/zn G *, $f

Vy :: $ h Arx.c (*c i\)[a] = A[a]rT.c Mi...M„
$ H Arr.c (*c rx)[<r] = X[iJ:]Tx.cM]...M11

$ h ArT.c (*c rx)[a] G nrx.s^[a]
$ H ArT.c (*c rx)[cr] G UTx.Bx[a]
P2::$\-nrx.B'c[a] = nrx.Br[<T]
a G unify (x R i Ara ,.c(*r r*) ,nrx Bx

«nr\, #
there exists a (*0 >^o) G W2 and a V>i, s.t.
$ h Vi G *o
*o H V;o e *
$ h tpo o ij)j = i/> G *
(*o»^o) G w ><^2, W.3

well-typedness of ij)
by definition
by definition

by Lemma 7.11
by Def. substitution

by Lemma 6.7(1)
rr does not depend on \PC

by LF substitution lemma on Q\
by Definition of substitution

by Lemma 2.7
by Definition 7.10 on V\,V2

by Lemma 7.18
trivial

304

APPENDIX C. REALIZABILITY 305

Case: h = p

r(p) = urp.Bp well-typedness of ip
tt h raise (Tx, UTp. Bp) = (Vp > UFX. B'p) by definition
typ = zi : Ai,...,zn : An by definition

J Qx :: *, *p h XTx.p {% Tx) G nrx. B'p by Lemma 7.11
Sx ■.:$^a = ip,\rx-M1/z1,...\rx.Mn/zn G$,*p by Def. substitution
Vi::$\- XTx.p (*„ rx)[a] = A[a]rx.p Mx...Mn by Lemma 6.7(1)
$ h AIVp (*p Tx)[a] = \&}rx.pM1...Mn Tx does not depend on typ

r" <s>\-\rx.p(yprx)[o]enrx.Bp[a] by LF substitution lemma on Q\
$\-\rx.p{*prx)[a]eiLrx.Bx[<r] by Definition of substitution
V2::^hnrx.B'p[a]=Urx.Bx[a} by Lemma 2.7
a € unify (a;« Arx.P (*p r^mv ßs« nrx.£p) by Definition 7.10 on VuVi
there exists a (vl>o o ?/>o) G <^i and a ?/>i, s.t.
$ 1- tpi G *o
*0 I" ipo G *
$h^o°'0i='0G\I/ by Lemma 7.19
(ty0\>ipo) G Wi,W2,W3 trivial

Case: /i = g

pL G $
p(9) = nrs.ßfl g is a global parameter
there exists a (\I>o > ipo) G <^2 and a Vi, s.t.
$f-^e$0

^o ^ ^o G *
$ h ^o ° V'l = i> G * by Lemma 7.21
(*0 ^o) G Wi,0;2,W3 trivial

Lemma 7.23 (Liveness of multi coverage)

D

J/D::f hw cower*
and $ h V> G *
£/ien i/iere exists a ($o > ^o) G u and a ip\
s.t. $h^£$o

K.- and *o ^ V'o G *
and ^\-tpQoij;1=ip£^

Ü. Proof: by induction on X>

/-, -T-. $hw cover , .
Case: V = multiempty

hw cover

there exists a (\I/o > V'o) G w and a ipi, s.t.
$ h Vi- G *o

305

306

*0 I" V'o G *
$ h V'O ° V'i ='0G* by Lemma 7.22

Case: 2? =
* I- wi, (*' > V>')> w'2 cover* *[>' f- u/ cover

^ h wi, ij>' o a;', W2 cover*
multicons

there exists a (\&o > V'o) G wi, (^' > V;')> w2 and a V'I, s.t.

Pi
7>2

^3

$ h Vi G *o

*0 I- V'O G *
by i.h. on I?]

Case: (*0 > V'o) = (*' > V'')

then there exists a (^ > V;2) £ w' and a V;3 s.t.

by Lemma 7.22 on V\, X>2
by Lemma 5.2 on Q21V2

by Definition 7.3.2
trivial

7^-2 " $ l~ (V'o ° V;2) ° V;3 = V;o ° V'I
= V; G \[> by Def. substitution on Q\,TZ\, Q.-j, V;i

Qi: : $ r- V>3 G *2

Q2: : *2 I" V>2 G *o

Q3: : $ h V->2 ° V;3 = V'l G *o
Wi: : *2 h ^0 0 tp2 e \[>

(*2 > V'o 0^) G Vo ow'

(*2 [> lf\) 0 1P2) 6wi, V' ° w', w2

Case: (*0 > V'o) ^ (*' > VO

(*0>'/'o) G W1.W2

(*o> V'o) G wi,^' o w',W2

trivial
trivial

D

Lemma 7.24 (Liveness)
7/D::*hu cover*

ßnd£ :: $;• h V'; $ G *; A
£/ien there exists a (^"o > V'o) G w, and a V'l, s.t. $;• \- ipi;6 £ $0; [V'o] A

and *0; [V'o]A h V^o! idA £ *; A

a7?,c/ $; ■ h (V'o; ?^A) ° (V'I; <*) = (V;; 8) G #; A

Proof:

there exists a (vl/o > V'o) G a; and a V'i, s.t.

$ h V'i G #o
*0 I- V'o G *

$ h V'o ° V'i = V; G *

by Lemma 7.17 on £

by Lemma 7.23 on V,£\

306

APPENDIX C. REALIZABILITY 307

$;-hVi;<Je#0;[^o]A
o;[^o]Ah^0;idA G;A
*; • I" (V>o; idA) o (^i; 5) = {iß; S) 6 *; A by Lemma 7.16

*/ D

Lemma 7.25 (Progress for case)
// S = $; C > {i/>; 6) ~ ft
and i/iere ezisis a ((\&o ^ V'o) H> P) 6 ft, anrf a ij}\
s.t. $;-hi/)1;^e*o;[V'o]A
and *0; [^o]A h V^o; ^A e *; A
and $; • h (V>o; idA) ° W»I; <*) = (V>; 6) € *; A
i/ien £/iere exists an S"
and S => S"
and S" zs noi a match state

Proof: by induction over ft

Case: ft = ■

Impossible case ((vI>o > ^o) >-> P) € • undefined

Case: ft = ft', ((*{, > iß'Q) ^ P1)

Case: ((*„ t> </>0) ->■ P) = ((*'0 > $,) ^ P')

5 =» *;C>P[^i;<J]
■5 =U *;C>Pty>i;<J]

by tryes
by trid

Case: ((*„ > ^o) •-> P) ^ ((*{, > $,) -> P')

X>! ::5 ==> $; C t> (</>; o~)
V2 ::$;C>(^;Ä) ~ ft' =
S' is not a match state
S =^ S'

ft'
S'

by trno
by i.h. on ft'
by i.h. on ft'

by trstep on T>i,T>2

D

Theorem 7.26 (Progress)
// S is a state, but not a match state
andS-^$;->V
and V::\- S £F
then there exists an S' and an S" which is not a match state
and S =*► 5' =^ S"

307

308

Proof: by case analysis of S

Case: S = $;C>P

Case: P is not a valne: P ^ V

P = (M,P): trinx is applicable

P = let D in P: trlet is applicable

P = //x G P. P: trrec is applicable

P = {Pi,P'2): trpair is applicable

P = (VijP?): trmix is applicable

P = case (i/>;5) oiü:

Vv :: $;-Hcase (^;<J) 6 Pj
£1 ::$;-h V;tf G *;A
52::f;Ahfi€Fi
£3 :: * h strip (fi) cover*
there exists a (^0 > V;o) £ strip (0), and a ?/>i, s.t.
$;-h^i;<Je *0;[V>o]A
*o;[^o]Ah Vo;idA G 1';A
*; ■ 1- (^0; idA) ° (V'l; S) = {%l)\ S) € *; A
((*o>W^i')efi
Vi :: S =» 5'
2?2 :: 5' =^» 5"
5" is not a match state
S =^> 5"

by inversion on V
by inversion on Vy
by inversion on T>\

by formal side condition of V\

by Lemma 7.24
by Definition 7.13

by trcase
by Lemma 7.25
by Lemma 7.25

by trstep on V\, T>2

Case: P is a value: P = V; case analysis of C

C = C", (*,P): trpairC is applicable

C = C", (V, •): trmixC is applicable

C = C", (M, •): trinxC is applicable

C = C", (x G P = 7T! •,£>): trfstC is applicable

C = C", (x G P = 7T2 «,P>): trsndC is applicable
C = C", ((.x : A,y G P) = • ,£>): trsplitC is applicable

C = C',(x£ F = • M, D): trAppC is applicable

C = C", (x G F = • p. D): trappC is applicable

C = C, (x G P = •,D): trassign is applicable

all other continuations impossible due to typing

Case: S = $;C>D

D = •: trempty is applicable

D = (x : A,y G P) = P,D: trsplit is applicable

D = xG P = P M,P: trApp is applicable

D = x E F = P p,D: trapp is applicable

308

APPENDIX C. REALIZABILITY 309

D = v pL.D: trnew is applicable

. D'= x E F = 7Ti P, D: trfst is applicable

D = x E F = 7T2 P, D: trsnd is applicable

Case: S = <fr; C > ip; S: Case analysis over C

C = C",let • in P: trletC is applicable

C = C", (•; F/x, •): trmeta is applicable

C = C", (ApL. (•; •)): trnewC is applicable

C = C", (M/x, •; V/y, •): trsubst is applicable

all other continuations impossible due to typing

Theorem 7.27 (Readability)
// $; • h P E F
then there exists a V
s.t. $;-hV EF

and$;*>P =^ $;*\>V

Proof: direct.

V::$*t>P => S'

D

by Theorem 7.9

Case: S' = $ * > V

£i-$h*€F=*F
£2::\- ($*>P) EF
£3 ::h($*^F) EF
£ ::<5>;-hV EF

by tcdone
by tsprg on £x

by Lemma 7.4 on £2
by inversion on £3

Case: 5" ^ $ * t> V and computation ends in S'. Case is impossible because: 5" => S"' by
Theorem 7.26 and therefore 5" canot be the state the computation ended in.

D

Theorem 7.28 (Soundness of M%)

1. IfV::\-Q£G
then \= G.

2. IfV::$;-\-V EF
then $ |= F.

Proof: (1) direct, (2) by induction on the size of formulas F.

309

310

1. Case: G = DS.F:

by assumption
by inversion

by Lemma 6.11(1)

V::h box S.PE ns.F
Pi ::-;-HPGF
Let $ G [S], arbitrary

Qi ::*;•> P =^> $;*>V
Q2 - $; • r- V G P for a V by Theorem 7.27 on V2

$\=F by i.h.(2) on Q2

\= OS.F' by Definition 5.7 discharging assumption that $ arbitrary

2. Case: P = T:

Z?::*;-r-()eT by assumption
by Definition 5.7

Case: P = 3x : A. F'

Z> ::$;•!- (M, F') G 3.7; : A. F'
Vx ::§VM:A
V2 :: $; • h F' G P'[M/:;;]
$ |= P'[M/.x]
$ |= 3.x- : A P'

by assumption
by inversion on T>
by inversion on T>

by i.h.(2) on £2,X>2

by Definition 5.7 on T>\

Case: F = Vx:A.F':

V::$;-\-Ax:A.PeVx:A.F'
V} ::$,.T:A;-HPGP'

Let M be arbitray, s.t. §V M : A
Vi :: $;• H id«,; • G $; •
P2 - $; • 1- id*, M/x; • G $, .x : .4; •
Qi :: $; ■ h P[Af/a;] G F'[M/a:]
Q2 :: * > P[M/x] =^> $ > K
03 - $; ■ I" V G P'[M/a;]
$ |= P'[M/.x-]

by assumption
by inversion on V

by Lemma 6.22
trivial

by Lemma 6.20 (1) on X>i,P2

for a V by Theorem 7.27 on Qx

by i.h.(2) on Q3

$\=Vx:A.F' by Definition 5.7 discharging assumption that M arbitrary

Case: F = TlpL.F':

V :: &;■ \- \pL. P eIlpL. F'
Vi ::$,/;• hPGP'
Let p'L G $ be arbitray, s.t. $ h p :
Pi ::*;•!- id«,; • G $; •
P2::$;-r-id,i„/97/9;-G$,/9L;-
Qi::<&;.hP[p'/p]GPV/p]

by assumption
by inversion on T>

by Lemma 6.22
trivial

by Lemma 6.20 (1) on X>i,P2

310

APPENDIX C. REALIZABILITY 311

Q2 ::$»P[p'/p] =^- $>F
03 " *; • I- V e F'[p'/p] for a V by Theorem 7.27 on Qi
$ h *V/P] by i.h.(2) on Q3

<fr |= II/3L. F' by Definition 5.7 discharging assumption that p'L arbitrary

Case: F = Fi A F2:

V :: $; • h (Vi, V2) <E Fi A F2 by assumption
2?i :: $; • I- Vi € -Fi by inversion on X)
X>2 " $; • r~ ^ G i*2 by inversion on V
$(=Fi by i.h.(2) onX>!,£:i
$|=F2 by i.h.(2) on^,^
$ |= F A F2 by Definition 5.7

D

311

312

312

Bibliography

[AC99] Simon J. Ambler and Roy L. Crole. Mechanized operational semantics via
(co)induction. In Proceedings of the 12th -International Conference on Theorem
Proving in Higher Order Logics, pages 221-238. Springer-Verlag LNCS 1690, 1999.

[AF99] Andrew W. Appel and Edward W. Feiten. Proof-carrying authentication. In
G. Tsudik, editor, Proceedings of the 6th Conference on Computer and Commu-
nications Security, Singapore, November 1999. ACM Press. To appear.

[AF00] Andrew W. Appel and Amy P. Felty. A semantic model of types and machine
instructions for proof-carrying code. In Thomas Reps, editor, Conference Record of
the 27th Annual Symposium on Principles of Programming Languages (POPL '00),
pages 243-253, Boston, Massachusetts, January 2000. ACM Press.

[AH77a] K. Appel and W. Haken. Every planar map is four colorable, i. discharging. Illinois
J. Math., 21:429-490, 1977.

[AH77b] K. Appel and W. Haken. Every planar map is four colorable, ii. reducibility,. Illinois
J. Math., 21:491-567, 1977.

[AINP90] Peter B. Andrews, Sunil Issar, Dan Nesmith, and Frank Pfenning. The TPS the-
orem proving system. In M.E. Stickel, editor, 10th International Conference on
Automated Deduction, Kaiserslautern, Germany, pages 641-642. Springer-Verlag
LNCS 449, July 1990. System abstract.

[Alt93] Thorsten Altenkirch. A formalization of the strong normalization proof for System
F in LEGO. In M. Bezem and J.F. Groote, editors, Proceedings of the International
Conference on Typed Lambda Calculi and Applications, pages 13-28, Utrecht, The
Netherlands, March 1993. Springer-Verlag LNCS 664.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Jour-
nal of Logic and Computation, 2(3):297-347, 1992.

[Bar80] H. P. Barendregt. The Lambda-Calculus: Its Syntax and Semantics. North-Holland,
1980.

[BGLS92] Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Snyder. Basic
paramodulations and superposition. In D. Kapur, editor, Proceedings of the 11th In-
ternational Conference on Automated Deduction, pages 462-476, Saratoga Springs,
New York, June 1992. Springer-Verlag LNAI 607. To appear.

313

314 BIBLIOGRAPHY

[BM79] Robert S. Boyer and J. Strother Moore. A Computational Logic. ACM monograph
series. Academic Press, New York, 1979.

[BM88] R. S. Boyer and J. S. Moore. A Computational Logic Handbook. Academic Press,
New York, NY, 1988.

[BSvH+93] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. D. Smaill. Rippling: a
heuristic for guiding inductive proofs. Artificial Intelligence, 62(2):185-253, 1993.

[BvHHS91] Alan Bundy, Frank van Harmelen, Jane Hesketh, and Alan Smaill. Experiments
with proof plans for induction. Journal of Automated Reasoning. 7(3):303-324, Sep
1991.

[C+86] Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof Devel-
opment System. Prentice-Hall, Englewood Cliff's, New Jersey, 1986.

[CD99] Valerie Menissier-Morain Catherine Dubois. Certification of a type inference tool for
ML: Damas-Milner within Coq. Journal of Automated Reasoning, 23(3 4):319 346,
November 1999.

[CGL94] E. Clarke, O. Grumberg, and D. Long. A Decade of Concurrency - Reflections and
Perspectives, volume 803 of Lecture Notes in Computer Science, chapter Verification
tools for finite-state concurrent systems. 1994.

[CGP00] E. M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press,
2000.

[CH88] Thierry Coquand and Gerard Huet. The Calculus of Constructions. Information
and Computation, 76(2/3):95-120, February/March 1988.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

[Chu41] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press,
Princeton, New Jersey, 1941.

[Coq86] Thierry Coquand. An analysis of Girard's paradox. In Symposium on Logic Com-
puter Science, pages 227-236. IEEE, June 1986.

[Coq91] Thierry Coquand. An algorithm for testing conversion in type theory. In Gerard
Huet and Gordon Plotkin, editors, Logical Frameworks, pages 255-279. Cambridge
University Press, 1991.

[CP96] Iliano Cervesato and Frank Pfenning. A linear logical framework. In E. Clarke, edi-
tor, Proceedings of the Eleventh Annual Symposium, on Logic in Computer Science,
pages 264-275, New Brunswick, New Jersey, July 1996. IEEE Computer Society
Press.

[CP97a] Iliano Cervesato and Frank Pfenning. Linear higher-order pro-unification. In Glynn
Winskel, editor, Proceedings of the Twelfth Annual Sumposium on Logic in Com-
puter Science (LICS'97), pages 422-433, Warsaw, Poland, June 1997. IEEE Com-
puter Society Press.

314

BIBLIOGRAPHY 315

[CP97b] Iliano Cervesato and Frank Pfenning. A linear spine calculus. Technical Report
CMU-CS-97-125, Department of Computer Science, Carnegie Mellon University,
April 1997.

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion. Transactions of the
American Mathematical Society, 39(3):472-482, May 1936.

[CT95] C. Cornes and D. Terrasse. Automating inversion and inductive predicates in Coq.
In Proceedings of the Workshop on Types for Proofs and Programs, pages 85-104,
Torino, Italy, June 1995. Springer-Verlag LNCS 1158.

[dB72] N.G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for
automatic formula manipulation with application to the Church-Rosser theorem.
Indag. Math., 34(5):381-392, 1972.

[DFH+93] Gilles Dowek, Amy Felty, Hugo Herbelin, Gerard Huet, Chet Murthy, Catherine
Parent, Christine Paulin-Mohring, and Benjamin Werner. The Coq proof assistant
user's guide. Rapport Techniques 154, INRIA, Rocquencourt, France, 1993. Version
5.8.

[DFH95] Joelle Despeyroux, Amy Felty, and Andre Hirschowitz. Higher-order abstract syn-
tax in Coq. In M. Dezani-Ciancaglini and G. Plotkin, editors, Proceedings of the
International Conference on Typed Lambda Calculi and Applications, pages 124-
138, Edinburgh, Scotland, April 1995. Springer-Verlag LNCS 902.

[DH94] Joelle Despeyroux and Andre Hirschowitz. Higher-order abstract syntax with in-
duction in Coq. In Frank Pfenning, editor, Proceedings of the 5th International
Conference on Logic Programming and Automated Reasoning, pages 159-173, Kiev,
Ukraine, July 1994. Springer-Verlag LNAI 822.

[DHKP96] Gilles Dowek, Therese Hardin, Claude Kirchner, and Frank Pfenning. Unification
via explicit substitutions: The case of higher-order patterns. In M. Maher, ed-
itor, Proceedings of the Joint International Conference and Symposium on Logic
Programming, pages 259-273, Bonn, Germany, September 1996. MIT Press.

[DL98] Joelle Despeyroux and Pierre Leleu. A modal lambda calculus with iteration and
case constructs. In T. Altenkirch, W. Naraschewski, and B. Reus, editors, Types for
Proofs and Programs, pages 47-61, Kloster Irsee, Germany, March 1998. Springer-
Verlag LNCS 1657.

[DMTV99] Anatoli Degtyarev, Grigori Mints, Tanel Tammet, and Andrei Voronkov. Handbook
of Automated Reasoning, chapter The inverse method. Elsevier Science Publishers,
1999.

[Dow92] Gilles Dowek. Third order matching is decidable. In A. Scedrov, editor, Seventh
Annual IEEE Symposium on Logic in Computer Science, pages 2-10, Santa Cruz,
California, June 1992. IEEE Computer Society Press.

[DP95] Olivier Danvy and Frank Pfenning. The occurrence of continuation parameters in
CPS terms. Technical Report CMU-CS-95-121, Department of Computer Science,
Carnegie Mellon University, February 1995.

315

316 BIBLIOGRAPHY

[DPS97] Joelle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primitive recursion
for higher-order abstract syntax. In R. Hindley, editor, Proceedings of the Third

International Conference on Ttjped Lambda Calculus and Applications (TLCA'97),

pages 147-163. Nancy, France, April 1997. Springer-Verlag LNCS 1210. An ex-
tended version is available as Technical Report CMU-CS-96-172, Carnegie Mellon
University.

[FH94] Amy Felty and Douglas Howe. Generalization and reuse of tactic proofs. In Fifth In-
ternational Conference on Logic Programming and Automated Reasoning. Springer-
Verlag, LNCS 822, July 1994.

[FSDF93] Cormac Flanagan. Amry Sabry, Bruce Duba. and Matthias Felleisen. The essence
of compiling with continuations. In Conference on Porgramming Language Design

and Implementation. Albuquerque, New Mexico. June 21-25 1993.

[Gal93] Jean Gallier. On the correspondence between proofs and A-terms. Cahiers du centre
de logique, Universite Catholique de Louvain, January 1993.

[Gen35] Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo, edi-
tor, The Collected Papers of Gerhard Gentzen. 1969, pages 68-131. North-Holland
Publishing Co., Amsterdam, 1935.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1 102, 1987.

[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL : A Theorem
Proving Environment for Higher Order Logic. Cambridge University Press, 1993.

[Göd31] Kurt Gödel. Über formal unentscheidbare sätze der Principia Mathematica und
verwandter Systeme i. Monatshefte fr Mathematik und Physik 38, pages 173-198,

1931.

[Göd90] Kurt Gödel. On an extension of unitary mathematics which has not yet been used.
In Solomon Feferman et al., editors, Kurt Gödel, Collected Works, Volume II, pages
271-280. Oxford University Press, 1990.

[GP99] Murdoch Gabbay and Andrew Pitts. A new approach to abstract syntax involving-
binders. In G. Longo, editor, Proceedings of the. 14th Annual Symposium on Logic
in Computer Science (LICS'99), pages 214-224, Trento, Italy, July 1999. IEEE
Computer Society Press.

[Häh99] Reiner Hähnle. Handbook of Automated Reasoning, chapter Tableaux and related
methods, lsevier Science Publishers, 1999.

[HHP87] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining log-
ics. In Symposium on Logic in Computer Science, pages 194-204. IEEE Computer
Society Press, June 1987.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143-184, January 1993.

316

BIBLIOGRAPHY 317

[HO80] Gerard Huet and Derek C. Oppen. Equations and rewrite rules: A survey. Technical
Report STAN-CS-80-786, Stanford University, January 1980.

[Hof99] Martin Hofmann. Semantical analysis for higher-order abstract syntax. In G. Longo,
editor, Proceedings of the 14th Annual Symposium on Logic in Computer Science

*/ (LICS'99), pages 204-213, Trento, Italy, July 1999. IEEE Computer Society Press.

[How69] W. A. Howard. The formulae-as-types notion of construction. Unpublished
manuscript, 1969. Reprinted in To H. B. Curry: Essays on Combinatory Logic,

* Lambda Calculus and Formalism, 1980.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and
J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, 1980, pages 479-490. Academic Press, 1980. Hitherto
unpublished note of 1969, rearranged, corrected, and annotated by Howard, 1979.

[How98] J. M. Howe. Proof Search Issues in Some Non-Classical Logics. PhD thesis, Univer-
sity of St Andrews, December 1998. Available as University of St Andrews Research
Report CS/99/1.

[HP98] Robert Harper and Frank Pfenning. A module system for a programming language
based on the LF logical framework. Journal of Logic and Computation, 8(1):5—31,
1998.

[HP99] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF
type theory. In A. Felty, editor, Proceedings of the Workshop on Logical Frameworks
and Meta-Languages (LFM'99), Paris, France, September 1999. Extended version
available as Technical Report CMU-CS-99-159.

[HS96] D. Hutter and C. Sengler. Inka, the next generation. In Proceedings of the 13th
Confernce on Automated Deduction, LNAI. Springer Verlag, 1996.

[HS97] Robert Harper and Christopher Stone. An interpretation of Standard ML in type
theory. Technical Report CMU-CS-97-147, Carnegie Mellon University, 1997.

[HudOO] Paul Hudak. The Haskell School of Expression: Learning Functional Programming
through Multimedia. Cambridge Univ Press, 2000.

[Hue73] Gerard Huet. The undecidability of unification in third order logic. Information
and Control, 22(3):257-267, 1973.

* [Jau99] M. Jaume. A full formalization of SLD-resolution in the Calculus of Inductive
Constructions. Journal of Automated Reasoning, 23(3-4):347-371, November 1999.

[Kap98] Deepak Kapur. Automated geometric reasoning: Dixon resultants, grbner bases,
-1 and characteristic sets. In D. Wang, editor, Automated Deduction in Geometry,

1998.

[KHH98] Christoph Kreitz, Mark Hay den, and Jason Hickey. A proof environment for the
development of group communication systems. In C. Kirchner and H. Kirchner,
editors, 15th International Conference on Automated Deduction, pages 317-322.
Springer Verlag, LNAI 1421, 1998.

317

318 BIBLIOGRAPHY

[Kre98] Christoph Kreitz. Automated Deduction - A Basis for Applications, chapter Pro-
gram Synthesis. Kluwer, 1998.

[Kun95] Kenneth Kunen. A ramsey theorem in boyer-moore logic. Journal of Automated
Reasoning, 15:217-235, 1995.

[Lel98] Pierre Leleu. Induction et Syntaxe Abstraite d'Ordre Superieur dans les Theories
Typees. PhD thesis, Ecole Nationale des Pouts et Chanssees, Marne-la-Vallee,
France, December 1998.

[Low96] G. Lowe. Breaking and fixing the needham-schroeder public key protocol using
fdr. In Tools and Algorithms for the Construction and Analysis of Systems, pages
147-166. Springer-Verlag. 1996.

[LP92] Zhaohui Luo and Robert Pollack. The LEGO proof development system: A user's
manual. Technical Report ECS-LFCS-92-211, University of Edinburgh, May 1992.

[LY96] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1996.

[Mag95] Lena Magnusson. The Implementation of ALF—A Proof Editor Based on Martin-
Löf's Monomorphic Type Theory with Explicit Substitution. PhD thesis, Chalmers
University of Technology and Göteborg University. January 1995.

[McC94] W. W. McCune. Otter 3.0 reference manual and guide. Technical Report ANL-94/6,
Argonne National Laboratory, Argonne, USA., 1994.

[McC97] W. McCune. Solution of the robbins problem. Journal of Automated Reasoning,
19(3):263-276, 1997.

[McD97] Raymond McDowell. Reasoning in a Logic, with. Definitions and Induction. PhD
thesis, University of Pennsylvania, 1997.

[MCJ97] W. Marrero, E.M. Clarke, and S. Jha. Model checking for security protocols. In
DIM ACS Workshop on Design and Formal Verification of Security Protocols, 1997.
A Preliminary version appeared as Technical Report TR-CMU-CS-97-139, Carnegie
Mellon University, May 1997.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation, 1(4):497 -536,
1991.

[ML80] Per Martin-Löf. Constructive mathematics and computer programming. In Logic,
Methodology and Philosophy of Science VI, pages 153-175. North-Holland, 1980.

[MM97] Raymond McDowell and Dale Miller. A logic for reasoning with higher-order ab-
stract syntax: An extended abstract. In Glynn Winskel, editor, Proceedings of the
Twelfth Annual Symposium on Logic in Computer Science, pages 434-445, Warsaw,
Poland, June 1997.

318

BIBLIOGRAPHY 319

[MMOO] Raymond McDowell and Dale Miller. Cut-elimination for a logic with definitions
and induction. Theoretical Computer Science, 232:91-119, 2000.

[MP99] James McKinna and Robert Pollack. Some lambda calculus and type theory for-
malized. Journal of Automated Reasoning, 23(3-4):373-409, November 1999.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML - Revised. MIT Press, 1997.

[Mun97] C. Muhoz. Un calcul de substitutions pour la representation de preuves partielles
en thorie de types. PhD thesis, Paris 7, November 1997.

[MWCG99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed
assembly language. ACM Transactions on Programming Languages and Systems,
21(3):5'28-569, May 1999.

[Nec97] George C. Necula. Proof-carrying code. In Neil D. Jones, editor, Conference Record
of the 24th Symposium on Principles of Programming Languages (POPL'97), pages
106-119, Paris, France, January 1997. ACM Press.

[Nec98] George C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University,
October 1998. Available as Technical Report CMU-CS-98-154.

[NM88] Gopalan Nadathur and Dale Miller. An overview of AProlog. In Kenneth A. Bowen
and Robert A. Kowalski, editors, Fifth International Logic Programming Confer-
ence, pages 810-827, Seattle, Washington, August 1988. MIT Press.

[NN99] Wolfgang Naraschewski and Tobias Nipkow. Type inference verified: Algorithm
W in Isabelle/HOL. Journal of Automated Reasoning, 23(3-4):299-318, November
1999.

[NS78] R. Needham and M. Schroeder. Using encryption for authentication in large net-
works of computers. Communications of the ACM, 21:393-399, 1978.

[Nv098] Tobias Nipkow and David von Oheimb. Java-light is type-safe — definitely. In
L. Cardelli, editor, Conference Record of the 25th Symposium on Principles of Pro-
gramming Languages (POPL'98), pages 161-170, San Diego, California, January
1998. ACM Press.

[ORS92] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification system. In
D. Kapur, editor, Procedings of the 11th International Conference on Automated
Deduction (CADE-11), pages 748-752, Saratoga Springs, New York, June 1992.
Springer Verlag LNAI 607.

[OSRSC99] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Sys-
tem Guide. Computer Science Laboratory, SRI International, Menlo Park, CA,
September 1999.

[Pau83] Lawrence Paulson. Tactics and tacticals in Cambridge LCF. Technical Report 39,
University of Cambridge, Computer Laboratory, July 1983.

319

320 BIBLIOGRAPHY

[Pau87] Larry Paulson. Logic and Computation: Interactive proof with Cambridge LCF.
■ ■ Cambridge University Press, 1987.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem. Prover. Springer-Verlag LNCS
828, 1994.

[Pau98] Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6:85-128, 1998.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings

of the ACM SIGPLAN '88 Symposium on Language Design and Implementation,
pages 199-208, Atlanta, Georgia, June 1988.

[Pfe89] Frank Pfenning. Elf: A language for logic definition and verified meta-programming.
In Fourth Annual Symposium on Logic in Computer Science, pages 313-322, Pacific
Grove, California, June 1989. IEEE Computer Society Press.

[Pfe91] Frank Pfenning. Logic programming in the LF logical framework. In Gerard Huet
and Gordon Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge Uni-
versity Press, 1991.

[Pfe93] Frank Pfenning. A proof of the Church-Rosser theorem and its representation
in a logical framework. Journal of Automated Reasoning. 1993. To appear. A
preliminary version is available as Carnegie Mellon Technical Report CMU-CS-92-
186, September 1992.

[Pfe94] Frank Pfenning. Elf: A meta-language for deductive systems. In A. Bundy, editor,
Proceedings of the 12th International Conference on Automated Deduction, pages
811-815, Nancy, France, June 1994. Springer-Verlag LNAI 814. System abstract.

[Pfe95] Frank Pfenning. Structural cut elimination. In D. Kozen, editor, Proceedings of
the Tenth Annual Symposium on Logic in Computer Science, pages 156-166, San
Diego, California, June 1995. IEEE Computer Society Press.

[Pfe99] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning. Elsevier Science Publishers, 1999. In
preparation.

[PfeOO] Frank Pfenning. Computation and Deduction. Cambridge University Press, 2000.
In preparation. Draft from April 1997 available electronically.

[PM93] Christine Paulin-Mohring. Inductive definitions in the system Coq: Rules and
properties. In M. Bezem and J.F. Groote, editors, Proceedings of the International
Conference on Typed Lambda Calculi and Applications. TLCA'93, pages 328345,
Utrecht, The Netherlands, March 1993. Springer-Verlag LNCS 664.

[Pol94] Robert Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus

of Constructions. PhD thesis, University of Edinburgh, 1994.

[Pol97] Randy Pollack. Twenty Five Years of Constructive Type Theory, chapter How to
Believe a Machine-Checked Proof. Oxford University Pres, 1997. to appear.

320

BIBLIOGRAPHY 321

[PP99] Jeff Polakow and Frank Pfenning. Natural deduction for intuitionistic non-
commutative linear logic. In J.-Y. Girard, editor, Proceedings of the 4th Inter-
national Conference on Typed Lambda Calculi and Applications (TLCA'99), pages
295-309, L'Aquila, Italy, April 1999. Springer-Verlag LNCS 1581.

* [PP00] Brigitte Pientka and Frank Pfenning. Termination and reduction checking in the
logical framework. 2000. submitted.

[Pra65] Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm, 1965.
t

[PS98] Frank Pfenning and Carsten Schürmann. Twelf User's Guide, 1.2 edition, Septem-
ber 1998. Available as Technical Report CMU-CS-98-173, Carnegie Mellon Univer-
sity.

[PS99a] Frank Pfenning and Carsten Schürmann. Algorithms for equality and unification
in the presence of notational definitions. In T. Altenkirch, W. Naraschewski, and
B. Reus, editors, Types for Proofs and Programs, volume LNCS 1657, pages 179-
193, Kloster Irsee, Germany, March 1999. Springer-Verlag.

[PS99b] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-
logical framework for deductive systems. In H. Ganzinger, editor, Proceedings of
the 16th International Conference on Automated Deduction (CADE-16), pages 202-
206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

[Reu99] Bernhard Reus. Formalizing synthetic domain theory. Journal of Automated Rea-
soning, 23(3-4):411-444, November 1999.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23-41, January 1965.

[Rog92] Hartley Rogers. Theory of Recursive Functions and Effective Computability. MIT
Press, 1992.

[Roh96] Ekkehard Rohwedder. Verifying the Meta-Theory of Deductive Systems. PhD thesis,
School of Computer Science, Carnegie Mellon University, 1996. Forthcoming.

[RP96] Ekkehard Rohwedder and Frank Pfenning. Mode and termination checking for
higher-order logic programs. In Hanne Riis Nielson, editor, Proceedings of the Eu-
ropean Symposium on Programming, pages 296-310, Linköping, Sweden, April 1996.

t Springer-Verlag LNCS 1058.

[RSV99] I.V. Ramakrishnan, R. Sekar, and Andrei Voronkov. Handbook of Automated Rea-
soning, chapter Term indexing. Elsevier Science Publishers, 1999.

i

[SA98] R. Stata and M. Abadi. A type system for Java bytecode subroutines. In L. Cardelli,
editor, Conference Record of the 25th Symposium on Principles of Programming
Languages (POPL'98), pages 149-160, San Diego, California, jan 1998. ACM Press.

[SB98] Wilfried Sieg and John Byrnes. Normal natural deduction proofs (in classical logic).
Studia Logica, 60(1):67-106, January 1998.

321

322 BIBLIOGRAPHY

[Sch95] Carsten Schürmann. A computational met a logic for the Horn fragment of LF.
Master's thesis, Carnegie Mellon University, December 1995. Available as Technical
Report CMU-CS-95-218.

[SD99] Aaron Stump and David L. Dill. Generating proofs from a decision procedure. In
A. Pnueli and P. Traverso, editors, Proceedings of the FLoC Workshop on Run-Time
Result Verification, Trento, Italy, July 1999.

[SH93a] Peter Schroeder-Heister. Definitional reflection and the completion. In R. Dyck-
hoff, editor, Proceedings of the 4th International Workshop on Extensions of Logic
Programming, pages 333-347. Springer-Verlag LNAI 798, 1993.

[SH93b] Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, Pro-
ceedings of the Eighth Annual IEEE Symposium, on Logic in Computer Science,
pages 222-232, Montreal, Canada, June 1993.

[Sha88] N. Shankar. A mechanical proof of the Church-Rosser theorem. Journal of the
Association for Computing Machinery, 35(3):475-522, July 1988.

[Sha94] N. Shankar. Metamathematies, Machines, and Godel's Proof, volume 38 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1994.

[Sny91] Wayne Snyder. A Proof Theory for General Unification. Birkhäuser, 1991.

[SP98] Carsten Schürmann and Frank Pfenning. Automated theorem proving in a simple
meta-logic for LF. In Claude Kirchner and Helene Kirchner, editors, Proceedings
of the 15th International Conference on Automated Deduction (CADE-15), pages
286-300, Lindau, Germany, July 1998. Springer-Verlag LNCS 1421.

[Sta99] Mark Staples. Representing wp semantics in isabelle/zf. In Proceedings of the 12th,
International Conference on Theorem Proving in Higher Order Logics. Springer-
Verlag LNCS 1690, 1999.

[Tam97] Tanel Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199-204, 1997.

[Tho99] Simon Thompson. Haskell: The Craft of Functional Programming, Second Edition.
Addison-Wesley, 1999.

[Vir99] Roberto Virga. Higher-Order Rewriting with Dependent Types. PhD thesis, De-
partment of Mathematical Sciences, Carnegie Mellon University, September 1999.
Available as Technical Report CMU-CS-99-167.

[Wei97] Christoph Weidenbach. Spass: Version 0.49. Journal of Automated Reasoning,
2(18):247-252, 1997.

322

